UNIVERSITY OF TORONTO

INSTITUTE FOR AEROSPACE STUDIES
 4925 Dufferin Street, Toronto, Ontario, Canada, M3H 5 T6

Robust Robotics

prepared by

Team 67 - Wednesday
Yu Zheng (999911225)
Luyuan Chen (999516082)
Ran(Carrie) Yan (999888126)
prepared for
Prof. M.R. Emami

A technical report submitted for
AER201 - Engineering Design

TA: Rail-Ip

Division of Engineering Science UNIVERSITY OF TORONTO

1. Acknowledgement

We would like to express our gratitude to all those help us to complete this design project. We are very grateful to our supervisor Prof. M. Reza Emami and TA, Rail-Ip who gave us technical support and encouragement helped all time of the design process as well as their critical advises.

We also appreciate the class of Engineering Science 1T6 and 1T5 for they generously share their experience and resource throughout the entire project to help us overcome many problems. Lastly, we would like to give our sincere gratitude to our friends and family who patiently supported our completion of the project.

2. Abstract

"Robust Robotics" is the robotic prototype that was design and constructed over the entire semester in response to the project proposal, the LED Candlelight Test machine. It is required an autonomous robot that can turn on/off candlelights and detect at maximum 9 candlelights and can efficiently detect the presence of candlelights mounted on the machine, inspect their functionality and record the information gathered. The robot has to count the number of candlelights in testing and identify whether the candlelight is flickering, non-flickering and non-functional. All constraints demonstrated must be satisfied. On top of that, the machine is expected to be reliable, portable and elegant.

This report contains the complete design and construction process of the robot. It also contains the detail description for final prototype of each subsystem including Electromechanical, Circuit and Microcontroller. Further improvement suggestions are given for further interest to strengthen the design. Other related information of robot such as budget, schedule, integration and operating process are included as well.

The machine did not fully perform the design task in the demonstration but was acceptable. It turns on/off all the candlelights expectedly and correctly detect 8 out of 9 functions within 8 (s), which was far below the limited $90(\mathrm{~s})$. The only failure is due to the calibration mistake in microcontroller code, which can be fixed in 5 minutes. The robot is reliable given that it went through more than 100 times of testing before the final demonstration. Nevertheless, the robot meets all the requirements and constrains, further, some of the bonus features are also implemented.

Table of Content

1. Acknowledgement 3
2. Abstract 4
Table of Content 5
3. Symbols and abbreviations 9
4. Introduction 10
5. Market survey 12
6. Objectives and constraints 14
4.1 Objectives 14
4.2 Constrains 14
7. Mechanisms. 15
5.1 Switch gear 15
5.2 Relay 17
5.3 Rack and pinion 19
5.4. Theory 20
8. Budget 22
9. Division of problem 24
7.1 Electromechanical Subsystem 24
7.2 Circuit subsystem 25
7.3 Microcontroller subsystem 25
10. Electromechanical subsystem 26
8.1 Introduction 26
8.2 Tray 27
8.2.1 Assessment of the problem 27
8.2.2 Solution 28
8.3 Switch mechanisms 30
8.3.1 Assessment of the problem 30
8.3.2 Solution 31
8.4 Detection mechanism 35
8.4.1 Assessment of the problem 35
8.4.2. Solution 36
8.5 Frame 40
8.5.1 Assessment of the problem 40
8.6 Supporting calculation 42
8.6.1 Candlelight 42
8.6.2 Tray 42
8.6.3 Moveable base plate 42
8.6.4 DC motor. 42
8.6.5 Foldable cover 43
8.7 Suggestion for the improvement of the electromechanical subsystem 43
8.7.1 Summary of solutions and corresponding actuator. 43
11. Microcontroller subsystem 45
9.1 Overview 45
9.1.1 Problem assessment 45
9.2 Solution 46
9.2.1 Pin assignment of the PIC microcontroller 46
9.2.2 User interface 47
9.2.3 Count the number of the lights mounted. 50
9.2.4 Identify the functionality of the light mounted. 51
9.2.5 Display the information of qualified operation 54
9.2.6 Real Time Clock 56
9.2.7 Permanent log 59
9.2.8 PC interface. 62
9.2.9 Future Improvement 63
12. Circuit Subsystem 65
10.1 Problem Assessment 65
10.1.1 Sensor System 65
10.1.2 Power Supply 65
10.1.3 Actuator Driving Circuit 65
10.1.4 Cable management and Safety Ensured 65
10.1.5 Emergency stop 65
In advance, implement an emergency STOP button to cease all operations as long as the STOP button pressed. All dynamical parts will stop immediately expect the PIC, the power of PIC is independent of effect of Emergency STOP 65
10.2 Solution. 66
10.2.1 Light Sensing Circuitry: 66
10.2.2 Presence Sensing Circuity: 69
10.2.3 Actuator Driving Circuit 70
10.2.4 Power Supply 71
10.2.5 Emergency Stop and Power Line Board 73
10.2.6 Signal Selection through implementation of multiplexer 75
10.2.7 Protect Integrated Circuit/PIC 76
10.2.8 Wire Management 77
10.2.9 Suggestions for Improvement of the subsystem: 78
13. Integration 81
11.1 Photodiode and microswitch: 81
11.2 Soldering board allocation. 81
11.3 Driving circuit driving actuators: 82
11.4 Integration and Calibration between Circuit and Microcontrollers 82
14. Accomplished Schedule 83
15. Description of Overall Machine and Operating Procedure 85
13.1 Basic Feature 85
13.2 Functionality 85
13.2.1 Operation 85
13.2.2 Tray and its cover 85
13.2.3 Candlelights Switch System 86
13.2.4 Real Time Clock 86
13.2.5 2.5 Notification of Emergency STOP ON 86
13.3 3.Operating Procedure: 86
13.3.1 3.1 Operation Messages on LCD screen 86
13.3.2 3.2 Before the operation 87
13.3.3 3.3 In process. 88
16. System Issues and Improvements: 89
14.1 Portability 89
14.2 Toggle Emergency Button SHOULD be changed to pressed one 89
14.3 PIC18 replacs PIC 16: 89
17. Conclusion 91
18. Reference 92
19. Appendix 94

Intentionally left blank

1. Symbols and abbreviations

Abbreviation	Description
$\mathbf{A C}$	Alternative Current
$\mathbf{D C}$	Direct Current
\mathbf{V}	Volt
\mathbf{A}	Ampere
$\mathbf{m A}$	Milliamp
GND	Ground
Logic High	$5(\mathrm{~V})$ signal
Logic Low	0 (V) signal
IC	Integrated Circuit
LCD	Liquid Crystal Display
LED	Light Emitting Diode
PIC	Microchip ${ }^{\circledR}$ Peripheral Interface Controller
L Registers	Registers used to store light status
EEPROM	Electrically Erasable Programmable Read Only Memory
I/O	Input/output
UI	User Interface

2. Introduction

Automated quality assurance is one of the most important technic used in all industries. The common requirements for automated function checking machines are accuracy, efficiency, speed and reliability of operation. There are a lot different types available in the market, each one of them are tailored to specialized usage. The client, as a LED candlelight-manufacturing firm, required a machine that can automatically test the functionality of LED candlelights.
"Robust Robotics" is a an automated machine that is designed and constructed over the last 3 months to fulfill the requirement specified in the request for proposal. The prototype is expected to test the 3 functionalities of LED candlelights, namely Pass (candlelights flicker), Flicker Fail (candlelights are constantly on) and LED Fail (candlelights are constantly off). The machine shall be able to test 9 candlelights simultaneously. When the tray is not fully loaded, the machine is responsible for counting the candlelights mounted.

Our machine is a well-designed one, it not only satisfies all the requirement and constraints, but also designed to be elegant, robust and user-friendly. The machine can complete the whole operation within 90 seconds, with test 90.1% accuracy ($73 / 81$ tests passed). Moreover, it records the operation time accurate to seconds. It writes up to 4 sets of operational outcome including running time, performance of all candlelights and number of lights to EEPROM, also known as the permanent log.

In the design, workload is divided into 3 subsystems, the electromethanical subsystem, the circuit subsystem and the microcontroller subsystem. Yu Zheng is responsible for the design and construction of the mechanisms and all the structural part of the machine as well as interconnecting the moving parts and sensor modules. Ran Yan is responsible for fabricating all circuits of the machine, including circuit to drive motors, manipulating inputs from the sensor array and the main hub for power and outputs. Luyuan Chen is responsible for the microcontroller coding, designing the logic of the operation and UI.

The first section of the report, the project backgrounds and perspectives are provided. Later in the section, the budget and split of functions in detail are presented in detail. The second section gives specific information on the design of each of the subsystems. Last section contains the integration process, system improvement suggestions, accomplished schedule and conclusion.

3. Market survey

The LED candlelight industry has gone through a boom since they were introduced to the market. The LED lights have lots of advantages over the normal lights, because of its high efficiency in terms of its power consumed (it does not give out much hear as conventional light bulbs do) and it does not radiate harmful material. In the massproduced industry like LED manufacturing, even the highest final passes yield would generate an enormous amount of units that are not functional. A fast and accurate method of testing each unit is to be implemented. Thus the Automated Test Equipment (ATE) is developed to help the factories accomplish quality assurance quickly and accurately without manpower.

Current existing machines did not match the need stated in the design RFP, for the devices that are being selling are large and expensive. The price listed is typically around $\$ 2000-50000$ CDN on the Alibaba.com. Furthermore, the machines use 380 V industrial electricity. The typical machines has high accurate rate and can test over 10k LEDs per hour. In our case, not only this gigantic machine dissatisfied the requirement of the RFP, but also unnecessary to buy one for the purpose specified.

Figure 3.1. Existing industry solution to LED testing

The RFP requires a light capacity test machine, which only take 9 lights each round. Therefore a brand new design shall be proposed to match the requirement of the RFP and the constraints, criteria. The following sections gives the detailed design of the test machine.

4. Objectives and constraints

4.1 Objectives

The machine is required to complete follow objects

- Test 9 candlelights in a single operation
- Identify the functionality of each of the candlelight
- Can operate regardless of the ambient condition
- Easily accessible Emergency Stop button
- LCD should provide information of the operation

4.2 Constrains

- Must fit in $50 \times 50 \times 50 \mathrm{~cm}^{3}$ envelope at all operation times
- Weight must be less than 6 kilograms
- Maximum cost: $\$ 230$ CDN
- Time: entire operation process must be limited in 90 second
- No human interaction after START
- Tray can be separated from the machine and no power supply, actuator or electronic components attached to it
- Safety: no present hazard
- No need for dismantling and installing any part during transporting and loading candlelights

Acceptance criteria in decision-making

AHP Analysis

5. Mechanisms

5.1 Switch gear

As one of the major components of machine, the machine must be able to handle the operation of candlelight's switch. This requires the combination of mechanical and electrical to determine when and how to turn off or on the switch. Currently, some machines have been created to perform similar function. One of the designs will be presented and gained insight of its mechanism below.

Bertho's pointless switch machine

The most important design of this switch machine is the method for controlling the machine to either turn on or turn off the switch. It present the similar function that is needed for our Operating switch gear, because the light must be turned on before the testing and turned off after all the operation.

This machine contains the motor as drive gear to provide the power and it is activated by red pushed bottom. The rotate gear has a small bar used to flip the switch from one side to the other side. When the switch is flipped to another side, it changes the rotate direction of small bar on the rotate gear, and every time when the switch is flipped, the rotate direction will change as well.

Bertho's pointless switch machine is highly effective for the change of rotate direction and switch flipped motion. However, in this machine, the switch is connect to circuit as one part of machine to change the rotate direction, and it is distinctly different from the light switch, which is separated from the switch flipping mechanism. Moreover, Bertho's pointless switch machine uses the complicated circuit without microcontroller to achieve the change of rotate direction. Additionally, the switch of candlelight is small, which means the interaction surface is too small to ensure the bar can be use to flip from one side to the other side. Therefore, this mechanism must be modify including the using microcontroller to simplify the circuit and change rotate direction, the dimension and shape of bar, operation precision.

Figure 5.1.1. Example of the Bertho's pointless switch

Figure 5.1.2. Example of the Bertho's pointless switch

5.2 Relay

In researching the method to turn on/off the switch, the relay perform the circuitcontrolled way to achieve the on-off switch of another circuit. As show in the figure **, the entire system contains two circuit, the right circuit control the switch of left circuit. Once the right circuit is connected, the current go through the spule creating a magnetic force to attract the metal plate above the spule (the iron bar inside the spule is used to reinforce the magnetic force). However, this relay can only produce attractive force, and it is not suitable for the switch of candlelight, which need equal force to turn on/off the switch. But it still provides us with better understanding of applying electromechanical to control the switch.

Figure 5.2.1. Example of a relay switch

Figure 5.2.2 Example of a relay switch

5.3 Rack and pinion

Figure 5.3.1. The rack and pinion mechanism
The rack and pinion is the mechanism that can convert the rotation motion into the linear motion. In other words, this mechanism can change of rotational force such as motor to provide the linear direction force. A rack and pinion gear system is basically the combination of two gears. The pinion is traditional round gear while the rack is the straight gear. The gears are meshed with each other, when one of the gear more, it drives the motion of the other gear. The example of "rack and pinion" gear system can be seen on the rack railway, which is designed to travel up the steep inclines. The mechanism provides the force for train to overcome the large gravity force.

Figure 5.3.2. The application of 'rack and pinion', rack railway

5.4. Theory

The following theories and equations are used for understand the parameters of robot.

Moment of inertia:

Basically the moment of inertia is measure of sluggishness or inertness of a body to the change in its state of rest or rotation. It depends upon mass with respect to axis of rotation. The unit is defined as $k g * m^{2}$.

Definition for point bodies:

$$
I=m r^{2}
$$

For the collection of object, the moment of inertia is just the sum or integration over the entire body.

$$
I=\sum I=m r^{2} \text { Or } I=\int r^{2} d m
$$

Torque

The torque is a measurement of how much a force acting on an object causing the rotational motion of object. The object rotates about a fixed axis, called pivot point. The force " F ", and the distance from the pivot to the point where the force acts in called the arm moment arm, label as " r ".

The torque is defined as:

$$
\tau=F \times r
$$

Where both F and r are the vector, torque is the cross product of these two vector.

Electrical relation is the circuit

Two main formulas is used in the calculation in the circuit part:

$$
\begin{gathered}
R=\frac{V}{I} \\
P=V I
\end{gathered}
$$

where R, V, I and P donated as the resistance, voltage, current and power respectively.

6. Budget

The pricing of all parts are provided in the chart below

Circuit and Microcontroller

Item	Location	Supplier	Number	Unit Price (\$)	Total Price (\$)
Transistor TIP142N	H -Bridge	Project Kit	2	2	4
Transistor TIP147N	H -Bridge	Project Kit	2	2	4
Diode 1N4001	H-Bridge	Project Kit	4	0.2	1
Capacitor 104	H-Bridge	Project Kit	1	0.3	0
Photodiode BPW34	Light Sensor	Creatron Inc.	9	1.5	14
Operational Amplifier LM358	Light Sensor	Project Kit Creatron Inc.	5	1	5
Socket 2×4 Pins	Light Sensor	Project Kit Creatron Inc.	5	0.30/2	1
Microswitch	Presence Sensor		9	0.3	3
NAND gate 74HC00N	Presence Sensor	Project Kit Creatron Inc.	5	1.2	6
Socket 2×7 Pins	Presence Sensor		5	0.15	1
1×9 Jumper Wires(Male-Male)	Presence Sensor	Creatron Inc.	1	5.3	5
Resistors(1k,5.6k, 10k,47k,100k)	All Circuits	Creatron Inc.	40	0.1/10	0
Connecting Wires	All Circuits	Creatron Inc.	20	0.13	3
White Soldering Board (large)	Light Sensor	Creatron Inc.	1	3.5	4
White Soldering Board (small)	H bridge, Presence Sensor, Emergency Stop	Creatron Inc.	3	2.5	8
Green Soldering Board	Light sensor, Signal Selection	Creatron Inc.	2	1.5	3
Emergency Stop Button	Emergency Stop	Creatron Inc.	1	1.2	1
Socket 2×20 Pins	Emergency Stop	Creatron Inc.	2	0.15	0
Multiplexer CD4067BE	Signal Selection	Creatron Inc.	2	1.5	3
Power Supply		Canadian Computer	1	15.5	16
1×9 Jumper Wires(Female-Male)	PIC	Creatron Inc.	3	4.8	14
Black Tape	All Citcuit	Creatron Inc.	1	1.25	1

| Devbugger | Project Kit | 1 | 75 | 75 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Total for circuit \& microcontroller part \$ 170.75 | | | | |

Electromechanical

Material	Place in machine	
Wood	Switch mechanism, base, tray, motor support	7
Aluminum	Skeleton of the frame, switch mechanism	10
Acrylic	Wall of frame	10
Plastic	Wall of frame	3
Mental plate	Switch mechanism	3
Screw and nut \& nail	Frame, switch mechanism	15
DC motor \& gear and rack	Switch mechanism	
Total for electromechanical part: \$ 52		

Total Budget for all parts: \$ 222.75

7. Division of problem

The construction of entire robot was split into three main composts including electromechanical system, the circuit system and the microcontroller system. All the members should not only be responsible to the design of their own parts but also should help the other members with the debugging works. Before the integration, all the members focus on their work base of the direction of main design of robots. During the integration, the circuit members and programming member helped each other on the calibration of robot while the electromechanical member work with circuit member on design the placement of various circuits and sensor and the DevBugger. All three members discussed the change of idea, improvement problems.

7.1 Electromechanical Subsystem

Task	Member(s)
Before the integration	All members
General design of robot	Electromechanical member
Detail design of mechanism	Electromechanical member
Calculation of torque and dimension	Electromechanical member
Selection of motor and construction required material	Electromechanical member
Fabrication of robot	All members
During the integration	Electromechanical member
Change of design	Electromechanical and circuit members
Calibration of mechanism	
Placement of sensor and circuit	

Table 7.1. Responsibility on electromechanic subsystem

7.2 Circuit subsystem

Task	Member(s)
General design of circuit	Circuit member
Circuit schematics (motor \& sensor)	Circuit member
Calculation of resistance, current and voltage	Circuit member
Acquire sensor, power supply and other electric elements	Circuit member
Soldering circuit	Circuit member
During the integration	Circuit and programming members
Circuit testing	Circuit and programming members
Debugging circuit	

Table 7.2. Responsibility on Circuit subsystem
7.3 Microcontroller subsystem

Task	Member(s)
General design of code	Programming member
Writing the pseudo code	Programming member
Pin assignment and user interface	Programming member
Write the code for the motor and sensor	Programming member
Code on the devbugger	Programming member
During the integration Calibration of delay for motor and sensor Code for the bonus feature	

Table 7.3. Responsibility on microcontroller subsystem

8. Electromechanical subsystem

8.1 Introduction

The function of electromechanical subsystem is to provide the overall frame and mechanisms required in the machine. To be specific, the mechanisms in our robot include switch mechanism and candlelight detection mechanism. The electromechanical member is responsible to design the mechanisms of the robot as well as the arrangement of circuit board and power supply. In this section, the entire machine is decomposed into three main parts base on the technological working process of the machine. The detail of design and potential improvement will also be discussed in following.

The overall view of the robot is showed in the Figure 8.1.1 and Figure 8.1.2.

Figure 8.1.1. Overview of the machine

Figure 8.1.2 Back of the machine

8.2 Tray

8.2.1 Assessment of the problem

The tray is served as the platform to hold and fix the candlelights in the prescribed position. If the candlelights cannot be fixed, the candlelights tends to deviate from the original position during the operating process, then the counting number of candlelights and the completing test operation are impossible to finish. The design of tray should be easily assessable to the operator to load in the candlelights and supply the tray to the machine. To sum up, the tray should be reliable to fix the candlelights and convenient to operate.

8.2.2 Solution

Figure 8.2.1. 3 X 3 tray

Figure 8.2.2. Grid of the tray

The three by three grid is decided to be used for the tray as showed in the Figure 8.1.2. To solve the first problem, which is fixing the candlelight in particular position, the problem is decomposed into three-sub problem. First, to avoid the candlelight move horizontally, the size of each grid is almost the same as the size of the candlelight, so that it can prevent the candlelight move horizontally during operating. Second, to prevent the candlelight rotate in the grid, a special designed base is attached to the tray as found in the Figure 8.2.2 For each grid, the base contains two holes to allow the stand bar of candlelight to insert inside. The reason why the base is semicircle is another half space is used for the switch mechanism, which implies that the operator who is responded to load the candlelights in the tray should orientate the candlelights to allow the switch of candlelights expose. Third, to
keep the candlelight stay in the grid instead of jumping out, the cover in need, the detail design of cover will be discussed in the detection mechanism because it contains the sensors.

8.3 Switch mechanisms

8.3.1 Assessment of the problem

The switch mechanism is the most important part in this robot because it serve the essential function of the robot, turn on/off the candlelights. Without the switch mechanism, the other parts of robot become meaningless. The design of switch mechanism should be reliable and simple. Also, the time spent on turn/off the candlelight should be as less as possible to satisfy constrain that the total operation time must less than 90s. Therefore, the design problem of switch mechanism is identified as following:

- To keep the switch mechanism as simple as possible in order to reduce the mistakes, all the candlelights should be turned on/off at once.
- The friction force tends to cause the jam during turning on/off the candlelights
- The selection of mechanism to drive the force with two directions.

Figure 8.3.1. Switch mechanism

8.3.2 Solution

The entire switch mechanism is showed in the Figure 8.3.1. The follow subsections will describe the design to solve each problem.

8.3.2.1 Solution to A - moveable base plate

As showed in the Figure 8.3.1, there are nine pairs of small blocks sticking on the plate, which is moveable; each pair of wood blocks is in the position exactly under the switch of candlelight. The separation of each pairs of blocks is same to make is possible to turn on/off all the candlelights together. When the tray is supplied in the machine, the exposed switch of candlelights will fall in the gap between two blocks as shown in the Figure 8.3.2.. When the operation begins, the plate is drive to the right, and then the left
side block hit the switch of candlelight pushing it to right and turn of the candlelight. After finish the detection operation, the plate move back to turn off all the candlelight in the same way.

Figure 8.3.1. Moveable base plate

Figure 8.3.2. The tray supplied above the moveable plate

8.3.2.2 Solution to B - mental drawer slide

This idea come from the drawer because the friction to put out the drawer is small no matter how heavy it is. As showed in the Figure 8.3.2, two drawer slides is refitted to match the size of our design, between them is connected the moveable base plate. This design can prevent the plate vacillate to left and right when the driving force is provide, and the friction force needed to overcome is reduced sharply.

Figure 8.3.3. Mental drawer slide

8.3.2.3 Solution to C - rack and pinion

To provide the horizontal force for both two sides, the linear actuator rack and pinion is employed. The pinion is connected to the motor, when the motor rotates; it causes the pinion drive the rack to move, thereby translating the rotation motion of motor to linear motion of rack. Finally, the rack attaching to the plated and drive the plate moves horizontally for both directions. In the Figure 8.3.4, it gives the overall view of this mechanism.

Figure 8.3.4. Rack and pinion

8.4 Detection mechanism

8.4.1 Assessment of the problem

From the RFP, the machine should be able to detect the total number of candlelights and the inspected functionality of each candlelight with three possible states in the test. Again, to keep the mechanism simple, we do not use and moving part here; instead, we use nine sensors to detect nine candlelights respectively. This design focus on the position of sensor and the problem is summarized below:

- Since the light sensor is sensitive, small difference of light intensity may cause the different result of change of sensors. The turn on candlelights may affect each other in the detection process.
- The selection of sensor that can count the total number of candlelights.
- The sensor can only detect the light intensity with no more than 5 cm far away from the candlelight. It raises the problem that how to put the tray into the machine without affect the sensor.

8.4.2. Solution

8.4.2.1 Solution to A and C - foldable cover

To separate the candlelight for each grid, we come out the design that using the cover with similar structure of the tray. The cover can fold with hinge attaching to the sidewall. When the cover is close, as showed in the Figure 8.4.1, each candlelight can be isolate form other candlelights. Therefore, the sensor will not receive the light from other candlelights. The light sensor is fixed in the middle of grid as shown in the Figure 8.4.2. With the folded cover, the tray can put in machine without considering the limitation of space that the distance between light sensor and candlelight must less than 5 cm . There is a lock on the cover used to ensure the micro switch is pressed when the cover is closed as well as fixed the tray to prevent the tray moving.

Figure 8.4.1. Foldable cover

Figure 8.4.2 Sensor in the cover

Figure 8.4.3. Lock of the cover

8.4.2.2 Solution to B - Micro switch

The miniature snap-action switch is decided to be used to test the number of candlelight instead of IR sensor is because of its reliability and durability, unlike IR sensor which require high position accuracy. Micro switch only need little physical force to actuate through the use of tipping-point mechanism. Figure 8.4.4 shows that, the micro switch is attached to the one side of grid of cover. When the cover is fold down, the candlelight in the grid of tray press the actuator of micro switch and create the signal to tell the pic board that there is the candlelight in that position. If the grid of tray is empty, the actuator will not change and no signal created.

Figure 8.4.4. Micro switch in the cover

8.5 Frame

8.5.1 Assessment of the problem

The machine contains not only the mechanisms but also the circuit; the circuit parts contain a large number of electric wires that tend to affect the moving parts. Also, for safety consideration, the frame of machine should contain the wall to prevent the electric wire expose outside causing the potential risk. The material selected for the wall should also be paid more attention, since the machine the design to test the LED candlelight intensity, the light comes from outside tends to affect the sensor. In addition, the material should be as light as possible to satisfy the weight constrain.

8.5.2Solution

Figure 8.1.1 shows that the frame, like a box, encloses all the circuit, PIC board, power supply and the mechanisms in side the frame. All the electric wire is stay above the entire the mechanisms to prevent the wire affect the moving part of machine. The material used as the skeleton of the frame is aluminum, and the wall of the frame is acrylic and plastic. The acrylic is substantial enough that it can be used to support the PIC board and circuit without deformation. The plastic cover is non- transparent so that it can block the light from the environment. The wall is established at four side of machine left one side to allow operator to put in the tray.

All the circuit and the PIC board are fixed on the acrylic board inside the machine. To let the operator more convenient to control the machine, the keyboard and screen are isolated from the Devbugger board and fixed outside the frame as well as the emergency stop bottom as showed in the Figure 8.5.1.

Figure 8.5.1. Keypad, screen and emergency button

8.6 Supporting calculation

8.6.1 Candlelight

- Weight of candlelight: $10 \pm 0.1 \mathrm{~g}$
- Height without the head of lamp: 1.8 cm
- Total height: 3.3 cm
- Demeter: 3.8 cm
- Distance between random two supporting arms: 2.8 cm
- Position of switch: 0.5 cm away from one of the supporting arms

8.6.2 Tray

- \quad Size of entire tray: $17 \mathrm{~cm} \times 19 \mathrm{~cm} \times 1.8 \mathrm{~cm}$
- Size of each grid of the tray: $5.3 \mathrm{~cm} \times 5.3 \mathrm{~cm} \times 1.8 \mathrm{~cm}$ with cylindrical hole 3.8 cm diameter
8.6.3 Moveable base plate
- Distance between two woodblocks on the plate: 1 cm
8.6.4 DC motor
- Maximum Force required to turn on candlelights (9 candlelights): $4 \mathrm{~N} * 9=$ 36N
- Friction force $\approx 5 \mathrm{~N}$
- Total force required $=36 \mathrm{~N}+5 \mathrm{~N}=41 \mathrm{~N}=4.18 \mathrm{~kg}$
- Demeter of gear: 1.5 cm
- \quad Total required torque $=$ force x length $=4.18 \mathrm{~kg}$ X $1.5 \mathrm{~cm}=6.27 \mathrm{~kg}^{*} \mathrm{~cm}$
- Selected motor: Zheng DC motor
- Information of motor: $12 \mathrm{~V}, 50 \mathrm{rpm}, 110 \mathrm{oz}-\mathrm{in}(7.5 \mathrm{~kg} * \mathrm{~cm})$
- Since $7.5 \mathrm{~kg}>6.27 \mathrm{~kg}$, the DC motor can turn on $/$ off candlelights.

8.6.5 Foldable cover

- Size: $16 \mathrm{~cm} \times 18 \mathrm{~cm} \times 1.8 \mathrm{~cm}$
- Rotatable angle: $\leq 60^{\circ}$
8.7 Suggestion for the improvement of the electromechanical subsystem
8.7.1 Summary of solutions and corresponding actuator

Components of machine	Solution	Actuator
Tray	3X3 squared tray	No use
	Moveable base plate	No use
	Mental drawer slide	No use
	Rack and pinion	DC motor
Detection mechanism	Foldable cover	No use
	Micro switch	No use
Frame	Box	No use

After testing the robot's functionalities, some improvements can be implemented to improve the robot's reliability and utility rate of space.

8.7.2 Tray

The 3 X 3 tray limits the cover of tray should also be 3 X 3 squared which require large space to allow the cover to fold. If the linear tray is applied, less space is need to fold the cover, which means the size of entire machine can be smaller increasing the utility rate of space.
8.7.3 Mental drawer slide

The problem of mental drawer slide is the weight; it contributes most of the weight of switch mechanism. The material used is mental, which has high sturdiness but is not required for this mechanism. The material can change to reduce the weight of machine.

8.7.4 DC motor

DC motor is the only actuator that is connected the rack and pinion, which is used to turn on/off the switch of candlelight. The property of DC motor is that it can only be controlled with its running time instead of the number of rotation. Another property is that, the rotational speed depends on the applied force, the larger force, and the slower rotational speed. These two properties cause the microcontroller member takes a long time to calibrate the time required to turn on/off the candlelight.

In this robot, the time setup for running the motor is constant no matter how many candlelights is used to test. Such that, it cause the problem that if only fewer candlelights is tested, the force required to turn on the switch become smaller, the motor will over rotate and tend to cause the defection of candlelights. The improvement is that, since we test the number of candlelight first before the turning on the switch, the force can change according to how many candlelights inside the tray. This requires more programming from microcontroller member, but it can increase the durability of machine and prevent the defection of candlelights.

9. Microcontroller subsystem

9.1 Overview

The microcontroller acts like the brain of the machine, for it output control command to every electric circuit, and make decision from the information feed to it. The Microchip PIC16F877 microcontroller is chosen to be the only microcontroller used in the project that handles all functions of the candle light test machine. In all, the microcontroller is responsible for interacting with 1 motor controlled by H -bridge circuit (cross cite here), 2 multiplexers (Ti CD4067, Appendix), 9 photo-diodes and 9 microswitches. Additionally, the microcontroller controls several peripheral devices including the LCD display, a 4*4 keyboard, real time clock (RTC), Electric Erasable Programmable Read Only Memory (EEPROM) on the DevBugger V1.2 board.

9.1.1 Problem assessment

The microcontroller should able to accomplish required tasks specified in the request for proposal. There are also optional/ bonus tasks outlined in the RFP.

Required function:

- User interface allows user to interact with the machine in order to fulfill function
- Count the number of lights mounted on the tray
- Identify the functionality of the light mounted
- Display the information of qualified operation

Optional function:

- Real Time Clock (RTC), machine should able to display the time/time elapsed for the operation
- Provide the permanent \log function, store at least 4 set of data stored
- PC interfacing, the microcontroller shall transfer the data to PC connected

User interface serves as a means for the machine to communicate with user. User interface shall provide useful information respectively in each phase of the operating cycle. After all the operation done, the user interface should give feedback to the user, displaying comprehensive information of the operation, i.e, the number of lights and the functionality of each light as required by the RFP.

9.2 Solution

9.2.1 Pin assignment of the PIC microcontroller

The PIC16F877 provide 33 I/O ports, most of which are used in the design, the specific pin assignment are shown below, and for further references.

P	\#	Buffer	I/O	A/D	Usage
K??	0	TTL	N/A	N/A	Light sensor
	1	TTL	N/A	N/A	N/A
	2	TTL	I	A	N/A
	3	TTL	N/A	N/A	N/A
	4	ST	N/A	N/A	N/A
	5	TTL	N/A	N/A	N/A
~	0	TTL/ST	I	D	Emergency switch interrupt
	1	TTL	I	D	Keypad interrupt
	2	TTL	N/A	N/A	N/A
	3	TTL	N/A	N/A	N/A
	4	TTL	I	D	Keypad input
	5	TTL	I	D	Keypad input
	6	TTL/ST	I	D	Keypad input
	7	TTL/ST	I	D	Keypad input
	0	ST	I	D	Microswitch input (from Mux)
	1	ST	O	D	Multiplexer selection bit D
	2	ST	O	D	Multiplexer selection bit C
	3	ST	I	D	$\mathrm{I}^{2} \mathrm{C}$ synchronous, RTC
	4	ST	I	D	$\mathrm{I}^{2} \mathrm{C}$ synchronous, RTC
	5	ST	N/A	N/A	N/A
	6	ST	O	D	Multiplexer selection bit B
	7	ST	O	D	Multiplexer selection bit A
$\circ$$\stackrel{2}{0}$	0	ST/TTL	O	D	Motor control forward
	1	ST/TTL	O	D	Motor control reverse
	2	ST/TTL	O	D	RS (LCD control)
	3	ST/TTL	O	D	E (LCD control)
	4	ST/TTL	O	D	LCD data output
	5	ST/TTL	O	D	LCD data output

	6	ST/TTL	O	D	LCD data output
	7	ST/TTL	O	D	LCD data output
	0	ST/TTL	N/A	N/A	N/A
	1	ST/TTL	N/A	N/A	N/A
	2	ST/TTL	N/A	N/A	N/A

Table 9.2.1.1. Pin assignment

Figure 9.2.1.1. Arrangement of PIC16F877 PDIP packaging chip

9.2.2 User interface

The input from the user is collect by a $4 * 4$ keypad with the MM74C922 encoder, which output a 4-bit signal from the 16-key keypad. The 4-bit digital signal is connected to PORTB<7:4> on the microcontroller board. User can follow very simple instruction
displayed on the screen to operate the machine. At most of the times, user only have to press either A, B or C. The sample display prompt is given as

$$
\begin{aligned}
& \langle A\rangle \text { Star } \dagger \\
& \langle E\rangle \text { Log }\langle\mathrm{C}\rangle \text { Time }
\end{aligned}
$$

Figure 9.2.2.1. Sample screen prompt

The 4-bit binary signal is feed into the microcontroller, and the key detection module will examine the user input. Three keys are used in the project, namely A, B and C. The code only checks the difference between those three keys. After the key pressed by the user is identified, the microcontroller branched to different function modules and sends control to the machine and perform specific task. As shown in figure 1.3.2.1, when A is pressed, the machine enters the working phase (whose detail will be provided in later chapters). B is responsible for the Data logging function required, which gives user the information about the number of lights mounted and the performance/ functionality of each light. The logging module also provide the function to go through up to 4 cycles done in the past by reading the EEPORM. The function of C key is to provide the user an accurate time display; the function is fulfilled by the RTC (real time clock).

$\underline{1}$	$\underline{2}$	$\underline{3}$	$\underline{\mathrm{~A}}$
$\underline{4}$	$\underline{5}$	$\underline{6}$	$\underline{\mathrm{~B}}$
$\underline{7}$	$\underline{8}$	$\underline{9}$	$\underline{\mathrm{C}}$
$\underline{*}$	$\underline{0}$	$\underline{\#}$	$\underline{\mathrm{D}}$

$\underline{0}$	$\underline{1}$	$\underline{2}$	$\underline{3}$
$\underline{4}$	$\underline{5}$	$\underline{6}$	$\underline{7}$
$\underline{8}$	2	$\underline{\mathrm{~A}}$	$\underline{\mathrm{~B}}$
$\underline{\mathrm{C}}$	$\underline{\mathrm{D}}$	E	$\underline{\mathrm{F}}$

Figure 9.2.2.2 Key selection signal

To output information to the user, a LCD display unit follows HD47780 protocol is used. The PIC microcontroller uses I/O ports to send instructions and data, 4 bits at a time. The complete control mechanism can be found in the Appendix.

The LCD display is programmed to show user specific information at different stage of operation. For example, when $<\mathrm{A}>$ is pressed to run the machine, the LCD would display the machine is running. After the operation is done, it will display the details about the operation, providing information like the time elapsed in operation and the result. The flow of display on the LCD is shown below.

Figure 9.2.2.3. Flow of LCD display

When the machine is initiated or recovered from emergency stop, the machine will display "Team_67 Tester" and the current time and data. After 2s, the screen prompts user to select desired function, whether to start the operation, see the log of recently tested run and to see the time. When the machine enters run mode, the screen will notify user what is running. In specific, it will show "Turning on" when the motor is
moving and light is being on; "Checking spot" will be shown when the machine checks the presence of the spots. Then, when the A/D module (see later section for detail) is running, it will show "Checking Light" and the spot number of the spot that is being inspected. After the operation is done, the result page will show the time used in operation. In following screens, the number of lights mounted and the functionality for individual light is presented.

As shown in the flow, the screen will display "Emergency" when the Emergency Button mounted on the machine is pressed. This is done by the interrupt service. Once the emergency button is pressed, the circuit will cut the power of all moving part and send one $5(\mathrm{~V})$, high signal to $\mathbf{P O R T B}<\mathbf{0}>$, which is the port for external interrupt implemented on PIC16F877 chip. The INTF (RB0/INT external interrupt flag bit) on INTCON is automatically set to 1 and the program will branch to address 0×04 where the interruption code is located. The code snippet for displaying the "Emergency" is located in the interruption code.

9.2.3 Count the number of the lights mounted

There are 9 sets of sensors used in the project, each of which is responsible for one of the spots on the tray (refer to the sensor part for detail). As there are 9 analog input and 9 digital input and the ports are not enough to be assigned, it is decided that the multiplexer (specifically Texas Instrument CD4067 [Appendix] 16 to 1 multiplexer/demultiplexer) is used. The multiplexer (referred as "mux" in following text) utilize a 4-bit binary selection signal to choose the channel connected to output. The microswitch circuit is designed to output a $5(\mathrm{~V})$ (high) signal when the microswitch is closed, the circuit outputs a $0(\mathrm{~V})$ (low) otherwise. The 9 microswitch circuits is connected to the mux and can be output through the common output on the multiplexer chip. The selection signals are sent from PORTC $<7: 6>$ and PORTC $<2: 1>$ while the common output is connected to PORTC $<\mathbf{0}>$. The working cycle starts when the selection signal is set, makes the common output connect to the specific microswitch circuit. Then, by reading the status of the RC0 port is the presence of light at that spot determined. In general, when a light is mounted at a spot on the tray, the microswitch on that spot will
give a high signal. When the signal is selected by the mux, the RC0 port is pulled high and thus notifies the microcontroller that a light is present in the spot. The circuit is made that has the debouncing function, so the microcontroller is not responsible for the debouncing of the input (with respect to microcontroller). The algorithm of counting is provided below in Figure 1.3.3, the flow can be found in Figure 1.3.5.1 (description of reading all L registers).

Figure 9.2.3.1. Code for counting LEDs
9.2.4 Identify the functionality of the light mounted

It is requested by the RFP to identify three status of the LED candlelight, flicker failure (the light is constant on), led failure (the light is constant off) and pass (light flickers). The identification cannot be done by digital signal input, so the Analog-toDigital Converter Module built in the microcontroller is used. As discussed in the previous section, the signal of sensor is feed from the multiplexer. The sensor chosen is photo-diode which is very sensitive to light intensity. To be specific, it gives a large range of voltage output when in different environment. The sensitivity of photodiodes gives makes it easy to utilize A / D module to assess the functionality of the lights.

The A/D converter transforms an analog signal into a 10-bit digital signal. To be specific, the A / D converter works at a specific frequency, which is the sample rate. The 10-bit binary signal is split into two registers, which are ADRESH and ADRESL. The voltage of input signal is often around $2.5(\mathrm{~V})$ so only the low eight bits stored in the ADRESL is checked. The working scheme of the A/D module in the case of ours in as follows, details about the module is also discussed below.

Figure 9.2.4.1. Work flow of the A/D module

The voltage range of output from photodiode placed on a flickering light would be 0.9 to $3.0(\mathrm{~V})$ in our case. It is possible to select a voltage in between to act as the reference voltage. The reference voltage is carefully selected and calibrated for each spot on the tray to provide most accurate measuring. In one operation cycle (checking one light), 99 data point is taken consecutively with an interval of 0.01 (s) each. Then the voltage of each point is compared to the reference voltage. As shown in the flow chart, there is a register called "Counter", which is set to 100 when initialized. When the light
has a status of "flicker failure", or the light is constant on, the voltage input will is always higher than the reference voltage resulting in the counter get accumulated to 199. In contrast, in the case of LED failure, the counter will be 1 after the operation because of the fact that the voltage input will be constantly lower than the reference. Lastly, anything in between would dictate a flickering light (as "PASS"). Thus the status of light can be identified.

To store the information collected from the sensor, 9 separate registers are used. They are named from L1 to L9; each one of them follows a specific format convention:

Pass	Flicker failure	LED failure	No light
0 b 1000	0 b 0100	0 b 0010	0 b 0001

Table 9.2.4.1. Format convention of storing light status
The one-hot coding would make it easy to check and read. The 9 registers are initialized to be 0 b 0001 assuming no light is mounted at all spots. After making sure there is no light present at the spot, the code is change to 0 b 0000 for further changes. The specific flow is shown below.

```
setInitialValueForLightResigters
    movlw b'0001' ; LSB: 0001 as initial value: constant off light
    movwf l1
    btfsc PORTC,0 ; skip if the port is not set, proceed if the port is set
    bcf l1, 0 ; clear the 0 digit of the l1 register
;***************************************
; Check functions
;****************************************
regLight_1
    ; check the led register and log the info onto the l* register
    ; the l* register already cleared if the light is present
    btfsc LED, 1 ; skip if the 1st bit not set, set l* register otherwise
    bsf l1, 1
    btfsc LED, 2 ; skip if the 2nd bit not set, set l* register otherwise
    bsf l1, 2
    btfsc LED, 3 ; skip if the 2nd bit not set, set l* register otherwise
    bsf l1, 3
    return
```

Figure 9.2.4.2. Code for manipulating data storage
Also, to minimize the time used in operation, when the spot is empty, the most time consuming A / D conversion phase is skipped.

Figure 9.2.4.3. Schematic of storing data in memory

9.2.5 Display the information of qualified operation

At the end of each operation, the LCD display would display the information of: time used in the operation, number of light and status of presence of the operation and the functionality of lights. The result reading is done by checking the bits of L1 to L9 registers (discussed above). Working flow accompany with the code for displaying message is provided below.

Figure 9.2.5.1. Flow of assessing L register

```
;*****************************************
******************************************
Display macro Message
    local loop_
    clrf end-- Counter
    clrw Table_Counter
loop_ movf Table_Counter,W
    call Message
    xorlw B'00000000' ; check WORK reg to see if 0 is returned
    btfsc STATUS,Z
    end
    incf Table_Counter,F
end_
    endm
```


Figure 9.2.5.2. Code to write to screen

As can see in the code, the display module uses a table entry for data, write it separately in a loop to display whole messages.

9.2.6 Real Time Clock

A DS1307 real time clock chip with a $3(\mathrm{~V})$ battery forms the basis of the real time clock function. The microcontroller communicates to the chip by the $\mathrm{I}^{2} \mathrm{C}$ communication protocol on I/O ports PORTC $<\mathbf{3 : 4}>$. The specifications of the DS1307 chip are given in the Appendix. The real time module provides two functions: provide real time and act as timer.

The real time clock is initialized to the real time at it is first programmed. Then with the additional power supply, it runs regardless of the power of the board. When used as a timer, the time stamp is recorded at the beginning of each operation cycle. After the whole cycle is done, another stamp is recorded. The time elapsed of the operation is the difference between the two stamps. Furthermore, by converting the number into ASCII code, it is able to output the number onto the screen.

Figure 9.2.6.1. Algorithm of Real Time Clock

```
;******************************************
; Setup RTC with time defined by user
;*****************************************
set_rtc_time
rtc_resetAll ;reset rtc
rtc_set 0x00, B'10000000'
;set time
rtc_set 0x06, B'00010100' ; Year
rtc_set 0x05, B'00000010' ; Month
rtc_set 0x04, B'00101000' ; Date
rtc_set 0x03, B'00000001' ; Day
rtc_set 0x02, B'00010011' ; Hours
rtc_set 0x01, B'00100101' ; Minutes
rtc_set 0x00, B'00110000' ; Seconds
return
```

Figure 9.2.6.2. Time setting of RTC, which is only needed once before battery runs out

```
checkTimeElapsed
    ; first check the minute by subtract them
    clrf totalSecond ; init the register
    ;Get minute
\begin{tabular}{lll} 
rtc_read & \(0 x 01\) & ;Read Address 0x01 from DS1307---min \\
movfw & \(0 x 78\) & ; minute right now \\
movwf & Temp & \\
movfw & minute & ; minute read when starting in \(W\) \\
subwf & Temp, w place the result in w \\
call & multiplyByTen \\
call & multiplyBySix & \\
movwf & totalSecond & \(\quad\) time the minute by \(60 \rightarrow\) second in \(w\)
\end{tabular}
    ; calculate second
    rtc_read 0x00 ; read the seconds
    movfw 0x77 ; 10digit to w
    movwf Temp
    movfw tenSecond
    subwf Temp, w ; place the result in w
    call multiplyByTen
    addwf totalSecond, f
    movfw 0x78 ; 10digit to w
    movwf Temp
    movfw oneSecond
    subwf Temp, w ; place the result in w
    addwf totalSecond, f
    return
```

Figure 9.2.6.3. Algorithm of getting time from RTC

9.2.7 Permanent log

The purpose of permanent \log function is to keep long-term record for future reference. The registers provided in the PIC microcontroller lost its information stored when the power is cut. However, the EEPROM module would record the information even after the power is cutoff and even returned on because of its special structure. The EEPROM on the PIC16F877 chip is a $16 * 16$ memory array, with each trunk of 2-bit hexadecimal data. The data structure we utilize the EEPROM is displayed as follows, this table represent one row of the memory space within EEPROM

0	1	2	3	4	5	6	7	8	9	A	B-F
NR	$\mathbf{L 1}$	$\mathbf{L 2}$	$\mathbf{L 3}$	$\mathbf{L 4}$	$\mathbf{L 5}$	$\mathbf{L 6}$	$\mathbf{L 7}$	$\mathbf{L 8}$	$\mathbf{L 9}$	TS	N/A

Table 1.3.7. Schematics of data stored in EEPROM

NR: Number of operation, from 0 to 15 ideally

TS: Total seconds used during operation

After one operation cycle is done, the EEPROM write module is called to write all 9 L registers data into the EEPROM. While there is a need to read from the EEPROM, the values of 9 L registers is load back to the 9 registers for the generic L registerchecking module (see Figure 9.2.5.1 for detail). The working flow is displayed below.

Figure 9.2.7.1. Method of writing to EEPROM

```
;***************************************
; REEPROM module
;*****************************************
writeEEPROM
    ; you have to set the EADDR register yourslef in the code
    ; you have to set the EDATA by yourself
    banksel EECON1
    bsf STATUS, RP1
    bsf STATUS, RP0 ; bank3
    btfsc EECON1, WR ; wait for write to finish
    goto $-1
    banksel EEADR
    bcf STATUS, RP1 ; bank2
    movf EADDR, W
    movwf EEADR
    movf EDATA, W
    movwf EEDATA
    bsf STATUS, RP1 ; bank3
    bcf EECON1, EEPGD
    bsf EECON1, WREN
    bcf INTCON, GIE
    movlw 0x55
    movwf EECON2
    movlw 0xAA
    movwf EECON2
    bsf EECON1, WR
    bsf INTCON, GIE
    btfsc EECON1, WR ; wait for write to finish
    goto $-1
    banksel PORTA
    return
```

Figure 9.2.7.2. Code for writing to EEPROM

Figure 9.2.7.3. Method of reading from EEPROM

9.2.8 PC interface

The PC interface serves as a easy of recording the information on PC. IT utilizes the Universal Synchronous Asynchronous Receiver Transmitter module provided on the PIC16F877 chip. The communication occurs at a baud rate of 9600 bits per second, with 8 bits of data transferred serially through the RS232 port on the DevBugger board. HyperTerminal is required on target computer to act as the receiver as well as the decoder of the data.

9.2.9 Future Improvement

There is no perfect written code and actually there are a lot improvement can be made to the microcontroller code we have.

9.2.9.1 Division of functions in different modules

The style of code we have in this project is only one main file that contains all the code needed. However, the code is hard to debug and do maintenance to, for its unneeded complexity. Sometimes it is simply hard to look for the snippet desired in the file that has over 2000 lines of code. So the first improvement will be separate the code into different files.

Also, as can see from the code provided in the Appendix, every function of manipulating L registers is copied 9 times to accommodate the need for each of the registers (like the address, performance counter, etc.). Writing the functions generically can do another improvement. By saying
"Generic", one mean there will be only one function to handle the operation on 9 L registers. By assigning specific address to L registers in CBlocks, one can access the registers by referring to its address. The generic L register modules can take in that address as a parameter and directly control the register. This will reduce the code to $1 / 9$ of its original size and improve efficiency.

9.2.9.2 Motor control

According to the design, a powerful $12(\mathrm{~V})$ driven DC motor is used to turn the lights ready for inspection on and off. The method being used right now is just assigning digital signal to the H -bridge and delay for a certain amount of time. However, due to the unpredictability of DC motors, the stop position cannot be controlled perfectly. Once the DC motor runs over position, the gears start to wear out. Improvement on this part will be introducing interrupt service accompany IR beam cut sensors. Once the IR beam is cut, the interrupt flag is raised and thus the microcontroller can stop the motor at its most
optimized position. This improvement not only reduces the ware of the system but also provide better performance in terms of turning the lights on and off.

9.2.9.3 Data structure optimization

The data encoding used in the project is always one hot, ie the representation is setting only one of the bits in the however long binary string. This is good for simplifying the code checking the binary value but it is very inefficient. The reason is that in an 8-bit binary number, only 8 pieces of information can be recorded. However, if the encoding follows the conventional binary number, 256 values can be encoded. That is a big difference. In other words, the information stored in the L registers can actually be stored in only one register. Also, in the EEPROM data memory, we stored about 40 one hot coded binary number, consuming one-sixth space provided in the EEPROM. If the efficient encoding is used, we can use only $4 \sim 10$ memory spots for the same amount data. The efficient storage method can significantly reduces the space needed for storing data. In later development, compared to the method that is current using, this method can extend the data space to a large extent.

10. Circuit Subsystem

10.1 Problem Assessment

Circuits behave like a linkage between the PIC microcontroller and the electromechanical. The responsible for circuity part can be summarized as:

10.1.1 Sensor System

Design light sensing circuit and presence sensing circuit, which detect external condition variations and transfer into voltage variations. The voltage variation outputs can be regarded as digital or analog signals. The output signals are sent to PIC to analyze.

10.1.2 Power Supply

Provide noise-free, stable power to all electronic pieces including sensors, actuators, and microcontrollers.

10.1.3 Actuator Driving Circuit

Force the machine parts or the candlelight switches to move dynamically.

10.1.4 Cable management and Safety Ensured

Properly manage the wires to make the machine portable, stable and no potential electric shock hazards.

10.1.5 Emergency stop

In advance, implement an emergency STOP button to cease all operations as long as the STOP button pressed. All dynamical parts will stop immediately expect the PIC, the power of PIC is independent of effect of Emergency STOP.

10.2 Solution

10.2.1 Light Sensing Circuitry:

Figure 10.2.1.1. circuit (photodiode)
10.2.1.1 Functionality:

Figure 10.2.2.1. Photodiode BPW34
Light sensing circuits are powered by 5 V supply.

We selected photodiode BPW34 as our sensing devices to detect candlelights intensity. Compared with the circuit for phototransistor, though price of photodiode ($\$ 1.5$) is higher than phototransistor (\$1.2), the photodiode circuit as a whole is much simpler and cheaper. And the shape for photodiodes is square, which is easy to immobile.

LM358 operational amplifiers were applied to magnify output voltages to an detectable magnitude for PIC. When there is a non-flicker always-on candlelight, the output voltage will be around 3.3 V . If it is flickering, the voltage ranges from 2.4 V to 3.2V.Light sensing circuits were fabricated and soldered according to figure
10.2.1.2 BPW34 photodiodes can detect lighting intensity:

The resistance of photodiode varies with the changing of amount of light cast on it. Locating the candlelight's wick around 0.5 centimeters from the photodiodes, when the candlelight flicker, the output voltage is fluctuating between 2.5 V and 3.4 V .

Also, the distance from the candlelight's wick to the photodiodes matters. If the distance is 3 centimeters or more, with constantly on candlelight, the voltage is always less than $0.6 \mathrm{~V}-$-it is too low for PIC to recognize. If around 2 centimeters, the voltage is $1.2 \sim 2.2$ (V). Only with distance less than 1 centimeter, the output voltage will be large enough. This factor is taken into consideration when we integrate the circuit with electromechanical part.

10.2.1.3 Soldering Board Section to Hold Photodiodes:

Instead of just connecting the photodiodes to jumper wires, placing them on a specific "holder" is more fixed and stable. Hence, we decided to solder them onto soldering board sections. An entire soldering board was cut apart into appropriate size by hand drill. Also, the connecting wires from the board of photodiodes to the main light sensing board are soldered.

Under the implementation of soldering board as the "holder", the relative position between the photodiode and the candlelights is identical among all 9 sensors.

Figure 10.2.1.2. Photodiode soldered onto a soldering board section

10.2.1.4 Color Coded Wires:

In this circuit, for the wires connecting between photodiodes and main circuit board, the black wires denotes the anodes for photodiodes BPW34 which will be connected to the ground, while the red for cathode, connecting to the non-inverting input of LM358 Chip.

On the main circuit board, the white wire is supposed to connect to 5 V voltage power supply and the black one is to ground. All blue wires are signal outputs from photodiodes, and they will be sent to PIC as analog signals.

Figure 10.2.1.3. Photodiode wire color coded

10.2.2 Presence Sensing Circuity:

Figure 10.2.1.1. circuit (microswitch)
10.2.2.1 Functionality:

Presence sensing circuits are powered by 5V supply. Microswitches take advantages because they requires less about the accuracy of postion, compared with IR sensor, which emitter and collector must be "face-towards-face" or it will not work. Besides, higher than 4 V voltage are always regarded as digital signal 1 by microcontroller. The microswitches output changes from 0 V to 5 V when get pressed. Implementation of NAND gates renders the output signal non-bounce.

Figure 10.2.2.1. microswitch

10.2.2.2 Color Coded Wires:

In this circuit, for the wires connecting between microswitches and main circuit board, the colorful wires is connected port 1 to ground, while yellow wires connects port 2 to 2 denoted in the microswitch circuit. Similarly, purple wires connects port 3 to 3 .

On the main microswitch circuit board, the white wire is supposed to connect to 5 V voltage power supply and the black one is to ground. All blue wires are signal outputs from microswitch, and they will be sent to PIC as digital signals.

10.2.3 Actuator Driving Circuit

Bipolar H-Bridge

Figure 10.2.3.1. Bipolar H-Bridge Circuit

10.2.3.1 Functionality

H-Bridge circuit is powered by 12 V DC voltage, and the direction control signal is given by PIC.

It is designed to actuate DC motor for candlelights switching system.

10.2.3.2 Color Coded Wires:

The yellow wires are supposed to connect to PIC. They are the controlling signals inputs. And wires colored blue are connected to poles of DC motor. According to our convention, white wire is connected to $12 \mathrm{~V}+\mathrm{Vcc}$, and black one to ground.

10.2.4 Power Supply

Figure 1

(shown as seen from the wire side)
Figure 2
ATX12V Mother Board Connector

Figure 3
PCI Express Video Connector

(GND) BLACK	4	1	YELLOW (+12N)
(GND) BLACK	5	2	YELLOW (-12V)
(GND) BLACK	6	3	YELLOW (-12\%)

Figure 4 Serial ATA Connector

Figure 5
Standard Drive Connector

Figure 6 Mini-Drive Connector

Figure 10.2.4.1. ATX12V power supply and its connector alignment
Computer power supply readily provides noise free 5 V and 12 V voltage supply required by all circuits and PIC Devbugger board. Besides, computer power supply have short-circuit protection feature, which immediately cuts off power when short circuit occurs. In our project, we will use ATX12V(shown in Figure) as an ideal power for all electronic units and actuators.

The output power lines of ATX12V are color coded and adequate in quantity, which makes our power connecting and debugging easier. Specifically, the yellow wires are $12 \mathrm{~V}+\mathrm{Vcc}$ while red ones are $5 \mathrm{~V}+\mathrm{Vcc}$. Black wires indicates ground same as convention.

10.2.5 Emergency Stop and Power Line Board

Figure 10.2.5.1. Circuit (emergency stop circuit)

Figure 10.2.5.2. emergency stop and power board

10.2.5.1 Functionality

The purpose of power board as well as Emergency STOP board is to manage all power inputs and guarantee common ground of all circuits.Two 2×20 sockets are installed to allow power output from power board. The red line on upper part of the board is 5 V power line and the lower one is 12 V . Blue line denotes common ground and the orange wire connects both ground lines together.

The red line is from ATX12V power supply and it provides 5 V , similarly, the yellow one is 12 V . (As we noted before, the power supply output wires are color coded)Purple lines connects the board to port 1 and 2 of microswitch on both sides, and the orange lines connects to port 3.When all operations going on, meaning the emergency stop is OFF, port 1 and port 2 are connected while port 3 is open. The power outputs from power supply are connected to $5 \mathrm{~V} / 12 \mathrm{~V}$ power lines to power all parts of robot except PIC. (PIC is connected to 12 V from power supply directly. Therefore, even the emergency stop turns on, the PIC still works and LCD can display message such as "Emergency!")

When emergency stop on, port 1 is connected to port 3 .

10.2.5.2 Emergency STOP button Selection

Figure 10.2.5.3. Emergency stop button
The maximum current allowance for emergency button we selected is 6A. (big enough)

As measured by multimeter, the current from two microswitch board are usually 0.12 A and 0.25 A respectively. And current from light sensing board are 0.23 A in total. The current from H-bridge driving circuit is 0.4 A usually. From all information about current indicated above, the total amount of current through the button is always less than 1 A ; thus the button selected always works in safety.

10.2.6 Signal Selection through implementation of multiplexer

10.2.6.1 Functionality

As PIC16 input ports are not enough for 9 analog signals and 9 digital signals from sensing Circuit plus one more digital signal input from Emergency STOP board, two CD4067BE multiplexers are applied in our circuitry. One for selecting nine digital signals from microswitch presence sensing circuit, and the other for analog signals from photodiode light sensing circuit.

Sockets are installed to facilitate the signal input for multiplexers. The port we selected in utility is 2 to 10 as labeled clearly on the side of sockets.

10.2.6.2 Color Coded Wires

Selection signals inputs are denoted by yellow and labelled. The output signals from multiplexers are both blue with tape labeling "Microswitch" or "Light".Also, as convention, the ground is denoted by black wire while power input white wire.

10.2.7 Protect Integrated Circuit/PIC

In general, buffers are applied to current protect. It transfer a voltage from a first circuit, which has a high output impedance level, to a second circuit with a low input impedance. The interposed buffer amplifier protects the second circuit from loading the first circuit unacceptably and interfering with its desired operation.

In our robot, all voltages designed in the circuit are accorded with every electronic components data sheet and they can work safely. So for protection of IC and PIC, we focus on the current part. Corresponding to the principle of electromagnetic, if two chips connected, the current between them will negotiate by themselves; thus there is no hazard.

In our circuit, all signal outputs from sensing circuits are sent to 16 -to- 1 multiplexer for selection. For photodiode circuit, the output is from LM358, an operational amplifier chip. While for microswitch circuit, it is from 74HC00, a NAND logic gate. According to those, all connections are chip-to-chip. The current itself will negotiate. The working safety of circuit is guaranteed even without any buffers.For the signals sent to PIC microcontroller after selection in multiplexer, this a chip-to-chip connection, the current will be restricted in safety range. We dont need any buffers in this part.

10.2.8 Wire Management

All wires are color coded as we stated above.

Figure 10.2.8.1. Color coded wires and labeled wires

Besides, we labeled all wires with white tapes. In particular, for blue output wires, "M" denotes microswitch, and "L" denotes light sensor. Moreover, connecting wires are tied together to make our circuit neat and tidy.

Power supply output lines are cut, stripped, and soldered to our power board (Emergency STOP board) for stability, since connecting by jumper wires are unstable and jumpers wires are tend to burn out easily when a little large current through it.
10.2.9 Suggestions for Improvement of the subsystem:
10.2.9.1 Replace H-bridge with Integrated Circuit L298N:

Taken into account economy and portability factors, it would be better if we can replace H-bridge with L298 IC. L298 is much lighter than H-bridge and also takes less room. Meanwhile, L298 IC costs less than we complete a H-bridge circuit. Fabricating a H-bridge circuit, we need a soldering board(\$3), 4 transistors (\$1.5 each), 4 diodes (0.5 each), and some resistors (price negligible), which means at least $\$ 11$ in total. Compare with L298, whose price is around $\$ 8$, it is obvious the latter is a better alternative.

10.2.9.2 2.9.2 Microswitch Circuit:

We chose the microswitch circuit without bouncing when gets pressed. Compared the circuit with the one with bouncing, it needs one more NAND gate. We can simplify the circuit by replacing non-bouncing microswitch with the bouncing one. It wont influence our detect results as the bouncing time is very short and the PIC is not sensitive to that short-time variation. However, the problem of bouncing circuit is that the connection from the output of microswitch to multiplexer is no longer a chip-to-chip connection. Then buffers may be in need to provide current protection.

Figure 10.2.9.1. Microswitch circuit

10.2.9.3 Printed Circuit Board:

With the implementation of PCB, overall cost of circuits part can be reduced as well as the space designed for circuit board and the weight of total circuitry. Also, the connecting wires are more manageable with printed circuit board. Currently, the circuit boards design has a priority of modularity. This determines debugging and repairing relatively easy. Moreover, the PCB board has to be designed and fabricated specifically. That may be time-consuming and hard to realize since we only focus on a small project regarding machine.
10.2.9.4 Photodiode to photoresistor:

Figure 10.2.9.2. Photoresistor Cicuit
The above scheme is photoresistor circuit. Photoresistor is much simpler and lighter compared with photodiode circuit. Despite that the reaction time is longer and it
works non-linearly, if the reference resistor chosen appropriate, this circuit works as well as the photodiode circuit we used in our design currently.

11. Integration

Integration and Calibration between Circuit and Electromechanical Components: the integration between circuits and electromechinical components includes functionally integrating photodiodes and microswitches to mechanical structures, and connecting them to circuit boards, connecting motor to actuator driving board, placing and fixing all soldering board onto the machine, and installing human interface elements such as Emergency STOP button.

11.1 Photodiode and microswitch:

Photodiodes were soldered onto soldering board sections, and then the soldering board sections are align in order, and glued onto the machine in the fixed relative position towards candlelights. Since the relative positions are nearly same for all nine candlelights, it would be easy for the microcontroller part to set reference voltage. Meanwhile, the microswitches were also glued onto the machine by super glue 502.

Figure. photodiode and microswitch integrated with tray cover

11.2 Soldering board allocation

All soldering boards, 5 in total as well as the Devbugger board are placed onto a transparent resin board and fixed by proper screws as a circuity panel. The circuity panel is placed at the back of machine, and it functions as a holder for all circuits as well as a
shelter for closure of machine itself.

11.3 Driving circuit driving actuators:

Motors are connected to driving circuit, like H-bridge, L298 IC circuit to obtain power and control. In our case, the DC motor is connected to the H-bridge driving board on circuity panel, with PIC sending enable digital signals to H -bridge, the motor can successfully rotate forward and in the reverse direction.

11.4 Integration and Calibration between Circuit and Microcontrollers

The microcontroller board, namely the Devbugger board is powered by +5 V voltage independent of emergency stop button, and it also need to be grounded. The bridge between the bus on Devbugger board and circuit boards is a 40-pin IDE cable. All controlling signals output from bus through this cable to circuits and all detecting signals are collected into the cable then send to the PIC. The main problem between microcontroller part and circuit part is about floating signals. Once a signal sent into PIC is floating, it may influence the whole performance of the PIC. Floating voltage signal is a voltage not connected by any conducting path such as resistors to ground. To avoid unexpected behavior due to floating voltage, all ports not in use are grounded.

12. Accomplished Schedule

In this section, the chronological Gantt chart proposed in the project proposal is revisited and reflected upon. As noticed in the project time line, only the electromechanical subsystem followed the preset schedule. Both microcontroller and circuit subsystem member failed to stick to the schedule, owing to the uncertainty associated in the process of integration.

Figure 12. Project accomplished schedule (top), planned schedule (bottom)

13. Description of Overall Machine and Operating Procedure

13.1 Basic Feature
Name: Robust Robotics

Dimension: $30 \mathrm{~cm} \times 30 \mathrm{~cm} \times 40 \mathrm{~cm}$
Weight: 5.5 kg
Cost: $\$ 222.75$ Canadian dollars
Maximum Candlelights tested in a single run: nine
Operation Time: 8~9 seconds

13.2 Functionality

13.2.1 Operation

Our robot test the functionality of maximum 9 candlelights. All operation takes around 10 seconds. After the tray loaded by candlelights (it is regarded as standby mode), DC motors works to actuate the flipping switching system to open all candlelights. The microswitch goes to detect the presence of candlelights, then the total number of candlelights loaded is displayed on LCD. Afterwards, photodiode light sensing circuit works to test the functionality of existing candlelights. The spot without candlelights will be skipped to ensure efficiency. Once all detection completed, the motor moves in reverse direction to send all parts of machine including the candlelights to standby mode.

13.2.2 Tray and its cover

The three by three tray is served as a platform to hold and fix the candlelights. With the tray cover implemented, it can immobile the candlelights in particular position during operation, which means it prevents horizontal, vertical and rotary movements of candlelights. Two holes at the bottom of the tray are responsible of avoiding horizontal and rotary movements while the tray cover makes sure candlelights not shift vertically.

Microswitches and photodiodes are glued onto the cover of the tray by super glue.

13.2.3 Candlelights Switch System

The switch system of our robot is reliable and simple, also it can avoid jam caused by friction forces during operations. Three parts-- a moveable base plate, mental drawer slide and rack with pinion, compose it. Mental drawer slide works with rack and pinion, and they are driven by motor to remove the moveable base plate forth and back. With the movement of base plate, the wood blocks stuck to the base plate encounter the switches to force them on/off.

13.2.4 Real Time Clock

It can display current time and date in second accuracy on LCD screen and even external power supply cut off, it still works and maintains in right time and date.

13.2.5 2.5 Notification of Emergency STOP ON

When the Emergency STOP on, meaning all operations cease immediately. The message "Emergency!" will be sent to PIC and displayed on LCD screen.

Emergency

Figure 13.1. Display on LCD screen when emergency stop ON

13.3 3.Operating Procedure:

13.3.1 3.1 Operation Messages on LCD screen

The above figures indicate all instructions on LCD and machine working flow.

13.3.2 3.2 Before the operation

The machine is normally in standby mode. Load maximum 9 candlelights onto the tray, make sure their positions fixed the holes at the bottom of the tray. Put the tray back to machine, and lock the tray.

Load the candlelights as the picture below instructed:

Figure 13.2 . Instruction for candlelights loading

13.3.3 3.3 In process

All operations are autonomous once we start the machine. The entire operation is normally completed within 10 seconds. Upon completion of the operation, a termination message will be displayed on the LCD screen.

3.4 After Operation

After all operation, the machine are back to "stand-by" condition, we can unload candlelights from the machine and read the results from LED screen on the left side.

First, the screen displays the total number of candlelights aligned on the tray.

After press any key to continue, it goes to display the testing results in order.
" $\mathrm{N} "$ means no candlelights there;
"F" means flicker failure, candlelights are constantly on;
"P" means pass, candlelights flicker;
"L" means LED failure, candlelights are constantly off.

For example, "FLPPNNLPF" on LCD screen means candlelights at port 1 and 9 are constantly on; while ones at port 2 and 7 are constantly off; Candlelights at port 3, 4, 8 functions well while there is no candlelights loaded at port 5 and 6.

14. System Issues and Improvements:

14.1 Portability

The machine we designed weighs 5.5 kilograms and dimension $30 * 30 * 40$ (in centimeter). It complies with constraints but still too heavy and cumbersome. In order to make it more portable, some lighter material can be chosen to fabricate the frame of our machine and shell of it. In particular, it is higher practical to replace all resin board we used with firm cardboard. In addition, installing wheels underneath the machine is doable. Besides, we have found a smaller and lighter, also cheapter power supply online. It can took place of the one which we currently used.

14.2 Toggle Emergency Button SHOULD be changed to pressed one

As mentioned by our TA, push button, compared with toggle one, would be expected to implementing emergency stop. Because if something urgent and really dangerous happens, pressing a button on is more assessable than toggling one. Taken into account the purpose of emergency stop button, the pushed one is more suitable.

Figure. Push Button in desire

14.3 PIC18 replacs PIC 16:

Without installation of multiplexer, there will be 19 input signals, of which 9 are analog from photodiode circuit, 9 are digital signals from microswitch circuit and the rest one are digital signal from emergency stop board. Besides, 2 output digital signals are
intended to enable and control the H -bridge and the DC motor.

PIC 16 only have eight analog ports, which is not enough without the help of multiplexer. While PIC 18 can be applied to provide enough analog and digital ports with multiplexer required.

Employment of multiplexer helps lower machine budget, reduce the weight of machine as soldering board is rather heavy compared with other components. In addition, owing to the chosen multiplexer is 16 to 1 , there are some ports leaving unused, which suggests they need to be grounded to avoid floating voltage effect. This means a lot of extra work and harden debugging. After all, PIC 18 is more suitable than PIC 16 for our design machine.

15. Conclusion

"Robust Robotics" is an autonomous candlelight-testing machine, which was designed and constructed over the past four months. This machine is capable of testing the functionality of at most 9 candlelights in a single run, opening the switches of candlelights, testing, after that turning off the candlelights and returning to the original state. It satisfies all the constraint and requirements stated previously and it can operates reliably throughout the testing process.

The construction of design can be categorized into three: fabrication of the tray, fabrication of switching system, assembly of the sensing system and motor system, and the closure mechanism. Candlelights are loaded onto the tray and once operation starts, switching system driven by DC motor turns on all candlelights except those failing LED (constantly off). Once the candlelights on, the sensing system works to detect the presence of candlelights and distinguish their functionality. The result of each candlelight will be sent to PIC microcontroller one by one. As long as all nine ports information collected, the switching system continues to work, while the motor rotates in reverse direction to turn off all candlelights.

The design performs consistently and it performed two high-qualified runs during public demonstration. It successfully test eight out of nine candlelights functionality except the one loaded at port 5 and displays results onto LED screen after operation accomplished. The total operation time for one run is around 9 seconds, which is under the limitation of 90 seconds.

In addition, "Robust Robotics" also has extra design features, such as real time clock, closure of the design, and it enjoys the potential of extendibility to more than nine candlelights testing. Nevertheless, the design has some issues and some improvement can be made to optimize its performance and functionality. Firstly, the toggle emergency stop button should be changed to push one in order to optimize its functionality when emergency happens. Secondly, the material used to closing all machine can be reselected considering that the machine is not light enough and it is possible to make it more portable. Last but not least, replacing PIC 16 with PIC 18 is practical in order to reduce the number of circuits.

16. Reference

[1] M.Reza Emami "Multidiscipline Engineering Design from Theory to Practice", University of Toronto, 2014.
[2] R. Emami, "Aer 201 Lecture Slides," 2014. [Online]. Available:
http://sps.aerospace.utoronto.ca/courses/aer201/Pages/LectureNotes.aspx
[3] Digikey, "Digikey," 2014. [Online]. Available: http://www.digikey.ca/
[4] "Most useless machine upgrade," 7 August 2011 . [Online].
Available:http://hackaday.com/2011/08/07/most-useless-machine-upgrade-now-with-a-button/.
[5] T. Fischer, "Roulette Barrel Gun," 29 November 2011. [Online]. Available: http://upload.wikimedia.org/wikipedia/commons/b/bb/Relais_Animation.gif. [Accessed 28 Jan 2014].
[6] Creatron Inc., Lilypad Light Sensor, [Online] available:
http://www.ereatronine.com/index.php//lilyp-398464.html
[7] [Online], Available:
http://upload.wikimedia.org/wikipedia/commons/b/bb/Relais_Animation.gif. [Accessed 28 Jan 2014].
[8] Darmawaskita HArtono, Measure light intensity with an 8-bit microcontroller. [Online] available: http://electronicdesign.com/lighting/measure-light-intensity-8-bit-microcontroller
[9] Makeblock, Switch Test Machine by using makeblock. [Online] available:
https://www.youtube.com/watch?v=35s8QObG7bo
[10] RACK AND PINION GEAR SYSTEMS, [Online] available: http://www.technologystudent.com/gears1/gears4.htm
[11] Rotational Inertia. [Online] available: http://physics.info/rotational-inertia/
[12] WHAT IS TORQUE. [Online] available:
http://www.physics.uoguelph.ca/tutorials/torque/Q.torque.intro.html
[13] From Radio Receivers to LED Flashlights: An LED Odyssey, [Online] available: http://www.coastportland.com/blog/receivers-to-led-flashlights-led-odyssey-ìnfographic/

17. Appendix

Assembly code for microcontroller
list p=16f877 ; list directive to
define processor
\#include <p16f877.inc> ; processor specific
variable definitions
\#include <rtc_macros.inc>
CONFIG _CP_OFF \& _WDT_OFF \& _BODEN_ON \& _PWRTE_ON \&
_HS_OS $\bar{C} \&$ _WRT_ENA $\bar{B} L E _O N \overline{\&}$ _CPD_OFF $\overline{\&}$ _LVP_OFF
; vaiables for RS232 module
offset EQU 0x20
temp EQU 0x21
sel_0 EQU b'0000'
sel_1 EQU b'1000'
sel_2 EQU b'0100'
sel_3 EQU b'1100'
sel_4 EQU b'0010'
sel_5 EQU b'1010'
sel_6 EQU b'0110'
sel_7 EQU b'0111'
sel_8 EQU b'0001'
cblock 0x22
; variables to store data
$l 1$
12
13
14
15
16
17
18
19
COUNTH
COUNTM
COUNTL
Table_Counter
lcd_tmp
lcd_d1
lcd_d2
com

```
dat
shiftCount
delayCount
Temp
Time
; variable for timer
minute
tenSecond
oneSecond
; store intermidiate value
totalSecond
dig1
dig10
LED_Counter
; variables for adcon
Threshold ; for the light sensor
Counter ; for identifying the behavior
Loop ; count the looping
LED ; for display infomation on LCD
; MUX
mux
; EEPROM code
EADDR
EDATA
turn
```

endc
; Declare constants for pin assignments (LCD on PORTD)
\#define RS PORTD,2
\#define E PORTD,3

```
;******************************************
; Display macro
;****************************************
Display macro Message
    local loop_
    local end
    clrf Tabl̄e_Counter
    clrw
loop_ movf Table_Counter,W
    call Message
```

xorlw $\mathbf{B '}^{\prime} 00000000^{\prime}$; check WORK reg to see if 0 is
returned
btfsc STATUS,Z
goto end
call WR_DATA
incf Table_Counter,F
goto loop_
end
endm
tableAccess macro ENTRY bcf STATUS ,C movwf Temp movlw HIGH ENTRY movwf PCLATH movf Temp, w addlw LOW ENTRY btfsc STATUS , C
incf PCLATH ,f movwf PCL
endm

ORG	0×0000	;RESET vector must always be
at 0x00		
goto	init	;Just jump to the main code
section.		
ORG	0x0004	; the interupt code
interupt		
; the interupt set when rb0 set to high on emergencybanksel		
btfss I	INTF	; the interupt comes from
rb0 changepic1		
goto \$+4		
bcf INTCON, INTF ; clear the flag		
goto displayEmergency ; and fall into a loop		
nop		
btfss PORTB, 0 ; if the portb is set,		
meaning emergency, display message		
goto \$-2		
; go back work		
goto Display0ptions		

```
displayEmergency
    Call
    Clear_Display
    Display Emergency_msg
    nop
    return
```

```
;*******************************************
```

;***
; Delay: ~160us macro
; Delay: ~160us macro
;***************************************
;***************************************
LCD_DELAY macro
LCD_DELAY macro
movlw 0xFF
movlw 0xFF
movwf lcd_d1
movwf lcd_d1
decfsz lcd_d1,f
decfsz lcd_d1,f
goto \$-1
goto \$-1
endm
endm
;***
; helper functions
;***
shiftLeft macro count
movlw count
movwf shiftCount
call shiftLeft_0
endm
shiftLeft_0
Call HalfS
movlw b'00011000'
call WR_INS
decfsz shiftCount, f
goto \$-4
return
shiftRight macro count
movlw count
movwf shiftCount
call shiftRight_0
endm
shiftRight_0
Call HalfS
movlw b'00011100'
call WR_INS
decfsz shiftCount, f
goto \$-4

```

\section*{return}
```

delayForTimeInterval macro time ; time unit: 0.5s
movlw time
movwf delayCount
call delay
endm
delay
call HalfS
decfsz delayCount, f
goto \$-2
return
BCD_Converter
CLRF dig1
movwf dig1
clrf dig10
movlw 0xA
subwf dig1, F
btfss STATUS, C
goto Divide_Done
incf dig10
goto \$-4
Divide_Done
addwf dig1, F
movlw 0x30
addwf dig10, F
addwf dig1, F
return

```
\(; * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
; DisplayRS macro
; ***************************************
DisplayRS macro Message
    ;
    ; the macrofunction to display table message on the
screen
```

 ; modified from Display
 ;
 local loopRS
 local endRS_
    ```
```

 clrf Table_Counter
 clrw
 loopRS
movf Table_Counter,W
call Message
xorlw B'00000000' ;check WORK reg to see if 0 is
returned
btfsc STATUS,Z
goto endRS_
call RS_Write
incf Table_Counter,F
goto loopR\overline{S}
endRS_
endm

```
; ***************************************
; Initialize LCD
; * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
init
    ;; setting up the interupt
    banksel INTCON
    bsf INTCON, GIE
    bsf INTCON, INTE ; enable rb0
interrupt
;; remember to set b0 as input
; +Summury for Pin out
; +Last update, Apr9, 1138 UTC
; |
; +A: 8 ports
; ||- RA0:5 set to ADC function
; ||- All 6 are input, pass through ADC
; ||- TODO:
; |
; +B: 8 ports
; ||- RB7:4, RB1: keyboard input
; ||- RB0,2,3 -----> Interupt function
; ||- TODO: N/A
; |
; +C: 8 ports
```

; ||- RC0: light number check
||- RC3:4: RTC
; ||- RC5:7, 2:1: Free -> RC7,6,2,1 for mux1
; ||- TOD0:
; +D: 8 ports
; ||- RD7:2: LCD
; ||- RD1:0: Motor
+E: 3 ports
; ||- Not used
banksel PORTA
movlw b'00000010' ; set up the adcon1
movwf ADCON1
clrf PORTA
clrf PORTB
clrf PORTC
clrf PORTD
banksel TRISA
movlw b'000111'
movwf TRISA
movlw b'11111111' ; Set required keypad
inputs
movwf TRISB

| movlw | $\mathbf{b}^{\prime} 00100001^{\prime}$ |
| :--- | :--- |
| movwf | TRISC |

clrf TRISD ; All port D is output
clrf TRISE
bsf TRISE, 1
; initaiate the l* variables
call setInitialValueForLightResigters
banksel PORTA
call initRTC ;Initialize the LCD (code
in lcd.asm; imported by lcd.inc)
call InitLCD
call initRS

```
```

goto Main
;***************************************
; Main code
;***************************************
Main
Call Clear_Display
Display Welcome_Msg
delayForTimeInterval 4
DisplayOptions
call Clear_Display
Display Menu_1
call Switch_Lines
Display Menu_2
;shiftLeft h'03'
movlw b'00000010'
call WR_INS
KeyInputDetection
btfss PORTB,1 ;Wait until data is
available from the keypad
goto \$-1
btfsc PORTB,1 ;Wait until key is released
goto \$-1
btfsc PORTB,7
goto C_PRESSED
btfsc PORTB,6
goto B_PRESSED
btfsc PORTB,5
goto A_PRESSED
goto KeyInputDetection
A_PRESSED

| btfss | |
| :--- | :--- |
| goto | PORTB,4 |
| call | KeyInputDetection |
| setInitialValueForLightResigters | |

 ; read the RTC initial input
 rtc_read 0x01
 movfw 0x78
 movwf minute
 rtc_read 0x00
    ```
\begin{tabular}{ll} 
movfw & \(0 \times 77\) \\
movwf & tenSecond \\
movfw & \(0 \times 78\) \\
movwf & oneSecond
\end{tabular}
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
; motor control ; PORTD,0 ff, PORTD,1
rev
```

;;;;;;;;;;;;;;;;;;;;;;
call Clear_Display
Display Motor_fwd_msg
call Motor_On_Forward
;delayForTimeInterval 6
call Motor_Off
;goto DisplayOptions
;;;;;;;;;;;;;;;;;;;;;
; check the spot
;;;;;;;;;;;;;;;;;;;;;
call Clear_Display
Display Spoting_Msg
call Switch_Lines
call checkMicroswitch ; it gets all spot
call Clear_Display
;;;;;;;;;;;;;;;;;;;;;
; check the number
;;;;;;;;;;;;;;;;;;;;;;
call Check_number
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; check the functionality
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
call Clear_Display
Display Light_Checking_msg
call Switch_Lines
movlw "1"
call WR_DATA
call selectMux_1
call Set_Value

```
checking done!
movlw b'01010100' ;5*153/255 = 3v is the reference value for the light sensor threshold ; use 192 3.75 v
movwf Threshold
btfss l1, 0
call Convert_AD
call regLight_1
movlw "2"
call WR_DATA
call selectMux_2
call Set_Value
movlw b'01010010' \(\quad ; 5 * 153 / 255=3 v\) is the
reference value for the light sensor threshold ; use 192
3.75 v
movwf Threshold
btfss l2, 0
call Convert_AD
call regLight_2
movlw "3"
call WR_DATA
call selectMux_3
call Set_Value
movlw b'01011000' \(; 5 * 153 / 255=3 v\) is the
reference value for the light sensor threshold ; use 192
3.75 v
\begin{tabular}{ll} 
movwf & Threshold \\
btfss & l3, 0 \\
call & \begin{tabular}{l} 
Convert_AD \\
call
\end{tabular} \\
\begin{tabular}{ll} 
movlw & "4" \\
call & WR_DATA \\
call & selectMux_4 \\
call & Set_Value
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & movlw & b'01011000' & ; \(5 * 153 / 255=3 v\) is the \\
\hline \multicolumn{4}{|l|}{reference value for the light sensor threshold ; use 192} \\
\hline \multirow[t]{9}{*}{3.75 v} & & & \\
\hline & movwf & Threshold & \\
\hline & btfss & 14, 0 & \\
\hline & call & Convert_AD & \\
\hline & call & regLight_4 & \\
\hline & movlw & "5" & \\
\hline & call & & \\
\hline & call & selectMux_5 & \\
\hline & call & Set_Value & \\
\hline & movlw & b'01111000' & \multirow[t]{2}{*}{; \(5 * 153 / 255=3 v\) is the threshold ; use 192} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{reference value for the light sensor threshold ; use 192 3.75 v}} \\
\hline & & & \\
\hline & movwf & Threshold & \\
\hline \multicolumn{4}{|c|}{btfss 15, 0} \\
\hline & call & Convert_AD & \\
\hline & call & regLight_5 & \\
\hline \multicolumn{4}{|c|}{movlw "6"} \\
\hline \multicolumn{4}{|c|}{call WR_DATA} \\
\hline & call & selectMux_6 & \\
\hline & call & Set_Value & \\
\hline & movlw & b'01011000' & ; \(5 * 153 / 255=3 v\) is the \\
\hline \multicolumn{4}{|l|}{reference value for the light sensor threshold ; use 192} \\
\hline \multicolumn{4}{|l|}{3.75 V (} \\
\hline \multicolumn{4}{|c|}{btfss l6, 0} \\
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{ll} 
call & Convert_AD \\
call & regLight 6
\end{tabular}}} \\
\hline & & & \\
\hline \multicolumn{4}{|c|}{movlw "7"} \\
\hline \multicolumn{4}{|c|}{call WR_DATA} \\
\hline & call & selectMux_7 & \\
\hline & call & Set Value & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & movlw & \(\mathbf{b}^{\prime} 0101000{ }^{\prime}\) & \multirow[t]{2}{*}{\[
; 5 * 153 / 255=3 v \text { is the }
\] threshold ; use 192} \\
\hline \multicolumn{3}{|l|}{\[
3.75 \mathrm{v}
\]} & \\
\hline & movwf & Threshold & \\
\hline \multicolumn{4}{|c|}{\multirow[t]{3}{*}{\(\begin{array}{ll}\text { btfss } & \text { l7, 0 } \\ \text { call } & \text { Convert_AD } \\ \text { call } & \text { regLight_7 }\end{array}\)}} \\
\hline & & & \\
\hline & & & \\
\hline \multicolumn{4}{|c|}{movlw "8"} \\
\hline \multicolumn{4}{|c|}{call WR_DATA} \\
\hline & call & selectMux_8 & \\
\hline & call & selectMux_8 & \\
\hline & call & Set_Value & \\
\hline & movlw & b'01011000' \(^{\prime}\) & ; \(5 * 153 / 255=3 \mathrm{v}\) is the \\
\hline \multicolumn{4}{|l|}{reference value for the light sensor threshold ; use 192} \\
\hline \multicolumn{4}{|c|}{movwf Threshold} \\
\hline \multicolumn{4}{|c|}{btfss 18, 0} \\
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{\(\begin{array}{ll}\text { call } & \text { Convert_AD } \\ \text { call } & \text { regLight_8 }\end{array}\)}} \\
\hline & & & \\
\hline \multicolumn{4}{|c|}{movlw "9"} \\
\hline \multicolumn{4}{|c|}{call WR_DATA} \\
\hline \multicolumn{4}{|c|}{call selectMux_9} \\
\hline \multicolumn{4}{|c|}{call Set_Value} \\
\hline \multicolumn{4}{|c|}{movlw b'01011000'} \\
\hline \multicolumn{4}{|c|}{movwf Threshold} \\
\hline \multicolumn{4}{|l|}{} \\
\hline & call & Convert AD & \\
\hline & call & regLight_9 & \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|c|}{; turn the lights back off} \\
\hline \multicolumn{4}{|c|}{Display Motor_rev_msg} \\
\hline \multicolumn{4}{|c|}{\multirow[t]{4}{*}{\begin{tabular}{ll} 
call & Motor_On_Reverse \\
call & shortDelay \\
call & shortDelay \\
call & Motor_Off
\end{tabular}}} \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
```

 ; time calculation
 call checkTimeElapsed ; time stored in
 dig10, dig1
movfw totalSecond
call BCD_Converter
call Clear_Display
call Clear_Display
;Display Done_Msg
Display Time_Done_Msg ; display the "time
used: %d s"
movfw dig10
call WR_DATA
movfw dig1
call
Display
call Switch_Lines
Display Done_2
goto RESULTS
B_PRESSED
movfw totalSecond
call BCD_Converter
call Clear_Display
;Display Done_Msg
Display Time_Done_Msg ; display the "time
used: %d s"
movfw dig10
call WR_DATA
movfw dig1
call
WR_DATA
Display Time_Done2_Msg
call Switch_Lines
Display Done_2
call RESULTS
C_PRESSED
btfsc PORTB,6
goto
btfss PORTB,5
goto KeyInputDetection
btfss PORTB,4
goto KeyInputDetection

```
goto show_RTC

Motor_On_Forward
bsf PORTD, 0
call shortDelay
;call shortDelay
call Motor_Off
return
Motor_On_Reverse
bsf PORTD, 1
return
Motor_Off ; tune PORTD, 0
bcf PORTD, 0
return
Check_number
banksel PORTA
clrf LED_Counter
btfss l1, 0 ; skip if the 0 bit of l1 is
set, add counter otherwise
incf LED_Counter
btfss l2, 0 ; skip if the 0 bit of l2 is
set, add counter otherwise
incf LED_Counter
btfss \(\quad 13,0\); skip if the 0 bit of 13 is
set, add counter otherwise
incf LED_Counter
btfss l4, 0 ; skip if the 0 bit of l4 is
set, add counter otherwise
incf LED_Counter
btfss l5, 0 ; skip if the 0 bit of 15 is
set, add counter otherwise
incf LED_Counter
btfss l6, 0 ; skip if the 0 bit of 16 is
set, add counter otherwise
incf LED_Counter
btfss l7, 0 ; skip if the 0 bit of 17 is
set, add counter otherwise
incf LED_Counter
btfss 18, 0 ; skip if the 0 bit of 18 is
set, add counter otherwise
incf LED_Counter
btfss 19, 0 ; skip if the 0 bit of 19 is set, add counter otherwise incf LED_Counter
return

Check_function

> call
> Display
> movfw
> call return

RESULTS
; ?check??
call Check_number
btfss PORTB,1 ;Wait until jsondata is
available from the keypad
goto \$-1
btfsc PORTB,1 ;Wait until key is released
goto \$-1
call Clear_Display
;call Switch_Lines
;display the number of lights ; P57 on
notebook
Display Quantity
movfw LED_Counter
call BCD_Converter
movfw dig1
call WR_DATA
;; display specfic data
call Switch_Lines
call logMicroswitch
;; delay
; delayForTimeInterval 6
btfss PORTB,1 ;Wait until jsondata is
available from the keypad
goto \$-1
btfsc PORTB,1 ;Wait until key is released
```

goto \$-1
call Clear_Display
; display behavior
call Clear_Display
Display Status_Msg
call Switch_Lines
call logLights
btfss PORTB,1 ;Wait until jsondata is
available from the keypad
goto \$-1
btfsc PORTB,1 ;Wait until key is released
goto \$-1
call Clear_Display
;;
;; testing the rs code here
;;
;DisplayRS Status_Msg
delayForTimeInterval 6
call Clear_Display
goto DisplayOptions
;***************************************
; Look up table
;***
Welcome_Msg
tableAccess Welcome_log
Welcome_log
dt "Team 67_tester", 0
Menu_1
tableAccess Menu_log_2
Menu_log_2
dt "<A> Start", 0
Menu_2
tableAccess Menu_log
Menu_log
dt " Log <C>:Time", 0
Spoting_Msg
tableAccess Spoting_log
Spoting_log
dt "Checking Spot", 0

```
```

Time_Msg
tableAccess Time_log
Time_log
dt "Return in 1 seconds", 0
Time_Done_Msg
tableAccess Time_Done_log
Time_Done_log
dt "Time used: ", 0
Time_Done2_Msg
tableAccess Time_Done2_log
Time_Done2_log
dt "s", 0
Status_Msg
tableAccess Status_log
Status_log
dt "Light status: ", 0
Done_2
tableAccess Done_2_log
Done_2_log
dt "<Any key> Result", 0
Quantity
tableAccess QualityLog
QualityLog
dt "Lights: ", 0
Quality_light_good
tableAccess QualityGoodLightLog
QualityGoodLightLog
dt "Flashlight1:", 0
Light_Checking_msg
tableAccess Light_Checking_log
Light_Checking_log
d\overline{t}}\mathrm{ "Checkīng Light ", 0
Motor_fwd_msg
tabbleĀccess Motor_fwd_log
Motor_fwd_log
dt "Turning on", 0
Motor_rev_msg

```
```

 tableAccess Motor_rev_log
 Motor_rev_log
dt "Turning off", 0
Emergency_msg
tableAccess Emergency_log
Emergency_log
dt "Emergency!", 0
Reset_msg
tableAccess Reset_log
Reset_log
dt "Reset!", 0
;***
; LCD control
;***************************************
Switch_Lines
movlw B'11000000'
call WR_INS
return
Clear_Display
movlw B'00000001'
call WR_INS
return
;***
; Delay 0.5s
; ***************************************
HalfS
local HalfS_0
movlw 0x88
movwf COUNTH
movlw 0xBD
movwf COUNTM
movlw 0x03
movwf COUNTL

```

HalfS_0
decfsz COUNTH, f
goto \$+2
decfsz COUNTM, f
goto \$+2
decfsz COUNTL, f
```

goto HalfS_0
goto \$+1
nop
nop
return

```
shortDelay
local shortDelay_0
movlw 0x28
movwf COUNTH
movlw 0x5
movwf COUNTM
movlw 0x3
movwf COUNTL
shortDelay_0
decfsz COUNTH, f
goto \$+2
decfsz COUNTM, f
goto \$+2
decfsz COUNTL, f
goto shortDelay_0
goto \$+1
nop
nop
return
AD_Delay
    local AD_Delay_0
    movlw 0x88
    movwf COUNTH
    movlw 0x0C
    movwf COUNTM
    movlw 0x01 ;12d38,77112 1E1F 11a0
    movwf COUNTL
AD_Delay_0
    decfsz COUNTH, f
    goto \$+2
    decfsz COUNTM, f
    goto \$+2
    decfsz COUNTL, f
```

goto AD_Delay_0
goto \$+1
nop
nop
return
OneS
local OneS_0
movlw 0x10
movwf COUNTH
movlw 0x7A
movwf COUNTM
movlw 0x06
movwf COUNTL
OneS_0
banksel PORTB
decfsz COUNTH, f
goto \$+2
decfsz COUNTM, f
goto \$+2
decfsz COUNTL, f
goto OneS_0
goto \$+1
nop
nop
return
;******* LCD-related subroutines ********
; ***********************************
InitLCD
bcf STATUS,RP0
bsf E ;E default high
;Wait for LCD POR to finish (~15ms)
call lcdLongDelay
call lcdLongDelay
call lcdLongDelay
;Ensure 8-bit mode first (no way to immediately
guarantee 4-bit mode)

```
```

; -> Send b'0011' 3 times
movlw b'00110011'
call WR_INS
call lcdLongDelay
call lcdLongDelay
movlw b'00110010'
call WR_INS
call lcdLongDelay
call lcdLongDelay

```
; 4 bits, 2 lines, \(5 \times 7\) dots
movlw b'00101000'
call WR_INS
call lcdLongDelay
call lcdLongDelay
; display on/off
movlw b'00001100'
call WR_INS
call lcdLongDelay
call lcdLongDelay
    ; Entry mode
movlw b'00000110'
call WR_INS
call lcdLongDelay
call lcdLongDelay
; Clear ram
movlw b'00000001'
call WR_INS
call lcdLongDelay
call lcdLongDelay
return
; \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
;ClrLCD: Clear the LCD display
ClrLCD
```

movlw B'00000001'
call WR_INS
return

```
; \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
; Write command to LCD - Input : W , output : -
; \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
WR_INS
\begin{tabular}{|c|c|c|}
\hline bcf & RS & ; clear RS \\
\hline movwf & com & ;W --> com \\
\hline andlw & 0xF0 & ;mask 4 bits MSB \\
\hline movwf & PORTD & ;Send 4 bits MSB \\
\hline bsf & E & ; \\
\hline call & lcdLongDelay & ; _ \\
\hline bcf & E & ; \\
\hline swapf & com, w & \\
\hline andlw & 0xF0 & ;1111 0010 \\
\hline movwf & PORTD & ;send 4 bits LSB \\
\hline bsf & E & ; \\
\hline call & lcdLongDelay & ; \\
\hline bcf & E & ; \\
\hline call & lcdLongDelay & \\
\hline
\end{tabular}
; \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
; Write data to LCD - Input : W , output : -
; \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
WR_DATA
\(\begin{array}{ll}\text { bsf } & \text { RS } \\ \text { movwf } & \text { dat }\end{array}\)
movf dat,w
andlw 0xF0
addlw 4
movwf PORTD
bsf E
call lcdLongDelay
bcf E
swapf dat,w
andlw 0xF0
addlw 4
movwf PORTD
bsf E
call lcdLongDela
bcf E
return
lcdLongDelay
movlw h'20'
movwf lcd_d2
LLD_LOOP
LCD_DELAY
decfsz lcd_d2,f
goto LLD_LOOP
return
```

;***************************************
; Initilization of both LCD and RTC
; ***************************************
initRTC

```
;Set SDA and SCL to high-Z first as required for
I2C
```

bsf STATUS,RP0
bsf TRISC,4
bsf TRISC,3
bcf STATUS,RP0 ; select bank 0

```
;Set up I2C for communication
call i2c_common_setup
;rtc_resetAll
    ;Used to set up time in RTC, load to the PIC when
RTC is used for the first time
    ;call set_rtc_time
    return
show_RTC
    call Clear_Display
    ;Get year
    movlw "2" ;First line shows
\(20 * * / * * / * *\)
    call WR_DATA
    movlw "0"
    call WR_DATA
    rtc_read 0x06 ;Read Address 0x06 from
DS1307---year
    movfw 0x77
    call WR_DATA
    movfw 0x78
    call WR_DATA
    movlw "/"
    call WR_DATA
    ;Get month
    rtc_read 0x05 ;Read Address 0x05 from
DS1307---month
```

movfw 0x77
call WR_DATA
movfw 0x78
call WR_DATA
movlw "/"
call WR_DATA

;Get day	
rtc_read	0×04
DS1307---day	
movfw	0×77
call	WR_DATA
movfw	0×78
call	WR_DATA

movlw B'11000000'
(hour):(min):(sec) **:**:** call WR_INS
;Get hour
rtc_read 0x02 ;Read Address 0x02 from
DS1307---hour
movfw 0x77
call WR_DATA
movfw 0x78
call WR_DATA
movlw ":"
call WR_DATA
;Get minute
rtc_read 0x01
;Read Address 0x01 from
DS1307---min
movfw 0x77
call WR_DATA
movfw 0x78
call WR_DATA
movlw ":"
call WR_DATA
;Get seconds
rtc_read 0x00 ;Read Address 0x00 from
DS1307---seconds
movfw 0x77
call WR_DATA
movfw 0x78

```
call WR_DATA
call OneS ;Delay for exactly one
seconds and read DS1307 again
goto DisplayOptions
```

;**
; Setup RTC with time defined by user
;***
set_rtc_time
rtc_resetAll ;reset rtc
rtc_set 0x00, B'10000000'
;set time
rtc_set 0x06, B'00010100' ; Year
rtc_set 0x05, B'00000100' ; Month
rtc_set 0x04, B'00001000' ; Date
rtc_set 0x03, B'00000010' ; Day
rtc_set 0x02, B'00000100' ; Hours
rtc_set 0x01, B'01010101' ; Minutes
rtc_set 0x00, B'00110000' ; Seconds
return

```
; ***************************************
; Delay 0.01s
; ***************************************
ShortDelay
    local ShortDelay_0
        movlw 0x88
        movwf COUNTH
        movlw 0x0B
        movwf COUNTM
        movlw 0x00
        movwf COUNTL

ShortDelay_0
    decfsz COUNTH, f
    goto \$+2
```

decfsz COUNTM, f
goto \$+2
decfsz COUNTL, f
goto HalfS_0
goto \$+1
nop
nop
return

```

: time calculation

multiplyByTen
movwf Temp
addwf Temp, 1
movfw Temp
return
multiplyBySix
movwf Temp
addwf Temp, 1
movfw Temp
return
checkTimeElapsed
; first check the minute by subtract them clrf totalSecond ; init the register ;Get minute rtc_read 0x01 ;Read Address 0x01 from DS1307---min movfw 0x78 ; minute right now
```

 movwf Temp
 movfw minute ; minute read when starting in
 W

```

```

60 -> second in W
movwf totalSecond
; calculate second
rtc_read 0x00 ; read the seconds
movfw 0x77 ; 10digit to w
movwf Temp
movfw tenSecond
subwf Temp, w ; place the result in w
call multiplyByTen
addwf totalSecond, f
movfw % 0x78 ; 10digit to w
return
;**
; Analog digital converting
;**
Convert_AD
banksel ADCON0
call Set_Value
movlw b'11010001' ; use RA2
movwf ADCON0
call
; ;movlw
; btfss ADRESH, 6 ; if the 6th digit is zero
; ;btfss ADRESH, 5 ; if the 5th digit is
nonzero, set 1
; ;btfss
; goto
movlw "0" ; light off or empty
; movwf
; goto
AD_CONV
b'00000000'
ADRESH, W
ADRESH, 7 ; if the msb of adresh is
STATUS, Z
; movlw

```

Set_Value
b'11010001' ; use RA2
ADCON0
AD_CONV
b'00000000'
ADRESH, W
ADRESH, 7 ; if the msb of adresh is
ADRESH, 6 ; if the 6th digit is zero ADRESH, 5 ; if the 5th digit is

STATUS, Z
\$+4
"0" ; light off or empty
LED
ENDLP
```

;;;;;;;;;;
movlw b'11000111' ;
xorwf
btfss
goto
movlw
movwf
goto
movlw
xorwf
btfss
goto
movlw b'0100' ; "1" ;constant light off
movwf
goto
movlw
movwf
;goto
nop
banksel PORTA
return

```
; ENDLP
; movfw \begin{tabular}{ll}
; & LED \\
; & call \\
goto & WR_DATA \\
&
\end{tabular}

```

incf Loop, F
goto AD_CONV
return

```

Set_Value
            movlw b'01100100' ;counter start from 50
and increament or decreament
movwf Counter
;
; the reference is set to individual light
;
movlw b'00000000'
movwf Loop
movlw b'0000'
movwf LED
return
; ** \(4 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\)
; RS232 PC interface
; *************************************** initRS
bsf STATUS,RP0 ; select bank 1 clrf TRISD
;Setup USART for RS232
movlw d'15' ; BAUD rate 9600, assuming
10MHz oscillator
movwf SPBRG
clrf TXSTA ; 8 bits data ,no,1 stop
bcf STATUS,RP0 ; select bank 0
bsf RCSTA,SPEN ; Asynchronous serial port
enable
bsf STATUS,RP0 ; select bank 1
return
;*********** Send welcome message \(* * * * * * * * * * * * * * * * * * * * * * *\)
bcf STATUS,RP0 ; select bank 0
clrf offset ; Reset offset to 0

RS_Write
; move anything into \(W\), single charactor and
log it onto the screen

;********* Table containing welcome message \(* * * * * * * * * * * * * * * * * * * *\)
TAB
tableAccess TAB_log
TAB_log
dt "Team 67_tester", 0
; ***************************************
; Integrating function
; ***************************************
; TODO: 1. Code for microswitch checking
; TODO: 2. Light sensor -----> 3cm: 2v
; TODO: 3. Logging
; LOGGING
setInitialValueForLightResigters
movlw b'0001' ; LSB: 0001 as initial value:
constant off light
movwf l1
movwf l2
movwf l3
movwf l4
movwf 15
movwf l6
movwf l7
movwf l8
movwf 19
clrf Threshold
return
```

; ***************************************
; Mux control
; ***************************************
selectMux
; select the input port using the signal provided in W
; selectionSignal: 1001
; RB023, RC5 as selecion -> RC5, RB3, RB2, RB0
; TODO: select RC as output, in init section
; setting the selection
; if the selectionSignal = 0000, needed to clear the
bit first
; bcf STATUS,RP0
bsf STATUS,RP1 ; select bank 1
banksel TRISC
bcf TRISC, 7
bcf TRISC, 6
bcf TRISC, 2
bcf TRISC, 1
; bcf STATUS,RP0
bcf STATUS,RP1 ; select bank 0
banksel PORTC
bcf PORTC, 7
bcf PORTC, 6
bcf PORTC, 2
bcf PORTC, 1
;bcf PORTB, 2
;bcf PORTB, 0
;delayForTimeInterval 4
btfsc mux, 3
bsf PORTC, 7
btfsc mux, 2
bsf PORTC, 6
btfsc mux, 1
bsf PORTC, 2
btfsc mux, 0
bsf PORTC, 1

```
return
selectMux_1
movlw- b'0100'
movwf mux
call selectMux
return
selectMux_2
movlw b'1100'
movwf
call
mux selectMux
return
selectMux_3
movlw b'0010'
movwf mux
call selectMux
return
selectMux_4
movlw b'1010'
movwf mux
call selectMux
return
selectMux_5
movlw
movwf
b'0110 \(^{\prime}\)
call
mux
return
selectMux_6
movlw b'1110'
movwf mux
call return
selectMux_7
movlw
movwf
b'0001'
call
mux
return
selectMux
selectMux_8
\begin{tabular}{ll} 
movlw & \(\mathbf{b}^{\prime} 1001^{\prime}\) \\
movwf & mux \\
call & selectMux \\
return &
\end{tabular}
selectMux_9
\begin{tabular}{ll} 
movlw & \(\mathbf{b}^{\prime} 0101^{\prime}\) \\
movwf & mux \\
call & selectMux \\
return &
\end{tabular}
; \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
; Check microswitches
; ***************************************
checkMicroswitch
; RC0 is for checking the presence of the led lights
; by switching the selection signal of the mux, read the port
; register the status on l* registers
; 0001 no light
; 0000 wait for further inspection of function
banksel TRISC
bsf TRISC, 0
banksel TRISB
bsf TRISB, 2
banksel PORTC
```

; bcf PORTC, 0
check spot 1
movlw b'0000'
movwf mux
call selectMux
call selectMux_1
movlw "1"
call WR_DATA
call AD_Delay;shortDelay
btfsc PORTC,0 ; skip if the port is not
set, proceed if the port is set
bcf l1, 0 ; clear the 0 digit of the

```
\(l 1\) register
```

 ; check spot 2
 bcf PORTC, 0 ; clear portc to prevent
 interference
movlw b'1000'
movwf mux
call selectMux
call selectMux_2
movlw "2"
call WR_DATA
call AD_Delay;shortDelay
btfsc PORTC,0 ; skip if the port is not
set, proceed if the port is set
bcf l2, 0 ; clear the 0 digit of the
l1 register
; check spot 3
bcf PORTC, 0
movlw b'0100'
movwf mux
call selectMux
call selectMux_3
movlw "3"
call WR_DATA
call AD_Delay;shortDelay
btfsc PORTC,0 ; skip if the port is not
set, proceed if the port is set
bcf l3, 0 ; clear the 0 digit of the
l1 register
; check spot 4
bcf PORTC, 0
movlw b'1100'
movwf mux
call selectMux
call selectMux_4
movlw "4"
call WR_DATA
call AD_Delay;shortDelay
btfsc PORTC,0 ; skip if the port is not
set, proceed if the port is set

```
```

 bcf l4, 0 ; clear the 0 digit of the
 l1 register
; check spot 5
bcf PORTC, 0
movlw b'0010'
movwf mux
call selectMux
call selectMux_5
movlw "5"
call WR_DATA
call AD_Delay;shortDelay
btfsc PORTC,0 ; skip if the port is not
set, proceed if the port is set
bcf l5, 0 ; clear the 0 digit of the
l1 register
banksel PORTB
; check spot 6
bcf PORTC, 0
movlw b'1010'
movwf mux
call selectMux
call selectMux_1 ;selectMux_6
movlw "6"
call WR_DATA
call AD_Delay;shortDelay
btfsc PORTB, 3 ; skip if the port is not
set, proceed if the port is set
bcf l6, 0 ; clear the 0 digit of the
l1 register

```
    ; check spot 7
bcf PORTC, 0
movlw b'0110'
movwf mux
call selectMux
call selectMux_2 ;selectMux_7
movlw "7"
call WR_DATA
call AD_Delay;shortDelay
```

 btfsc PORTB, 3 ; skip if the port is not
 set, proceed if the port is set
bcf l7, 0 ; clear the 0 digit of the
l1 register
;check spot 8
bcf PORTC,0
movlw b'0111'
movwf mux
call selectMux
call selectMux_3 ;selectMux_8
movlw "8"
call WR_DATA
call AD_Delay;shortDelay
btfsc PORTB, 3 ; skip if the port is not
set, proceed if the port is set
bcf l8, 0 ; clear the 0 digit of the
l1 register

```
```

 ; check spot 9
    ```
    ; check spot 9
    bcf PORTC, 0
    bcf PORTC, 0
    movlw b'0001'
    movlw b'0001'
    movwf mux
    movwf mux
    call selectMux
    call selectMux
    call selectMux_4 ;selectMux_9
    call selectMux_4 ;selectMux_9
    movlw "9"
    movlw "9"
    call WR_DATA
    call WR_DATA
    call AD_Delay;shortDelay
    call AD_Delay;shortDelay
    btfsc PORTB, 3 ; skip if the port is not
set, proceed if the port is set
    bcf 19, 0 ; clear the 0 digit of the
l1 register
```

```
; needed to clear up the mux selection
```

; needed to clear up the mux selection
movlw b'0000'
movlw b'0000'
movwf mux
movwf mux
call selectMux
call selectMux
call selectMux_1
call selectMux_1
call Clear_Display
call Clear_Display
return

```
return
```



```
    btfss l8, 0
    call write1
    nop
    btfsc 19, 0 ; skip if l1,0 is cleared
(present),
    call write0
    btfss
    call
    19, 0
    write1
    nop
    return
```

write1

| movlw | "1" |
| :--- | :--- |
| call | WR_DATA |

return
write0
movlw
"0"
call
WR_DATA
return
; $* *$
; Check functions
; $* *$
regLight_1
; check the led register and log the info onto the l* register
; the l* register already cleared if the light is present
btfsc LED, 1 ; skip if the 1st bit not set, set l* register otherwise
bsf l1, 1
btfsc LED, 2 ; skip if the 2nd bit not set, set l* register otherwise
bsf l1, 2
btfsc LED, 3 ; skip if the 2nd bit not set, set l* register otherwise
bsf l1, 3
return
regLight_2
; check the led register and log the info onto the l* register
; the l* register already cleared if the light is present
btfsc LED, 1 ; skip if the 1st bit not set, set l* register otherwise
bsf l2, 1
btfsc LED, 2 ; skip if the 1st bit not set, set l* register otherwise
bsf l2, 2
btfsc LED, 3 ; skip if the 1st bit not set, set
l* register otherwise
bsf l2, 3
return
regLight_3
; check the led register and log the info onto the l* register
; the l* register already cleared if the light is present
btfsc LED, 1 ; skip if the 1st bit not set, set l* register otherwise
bsf l3, 1
btfsc LED, 2 ; skip if the 1st bit not set, set
l* register otherwise
bsf l3, 2
btfsc LED, 3 ; skip if the 1st bit not set, set
l* register otherwise
bsf l3, 3
return
regLight_4
; check the led register and log the info onto the l* register
; the l* register already cleared if the light is
present
btfsc LED, 1 ; skip if the 1st bit not set, set l* register otherwise
bsf l4, 1
btfsc LED, 2 ; skip if the 1st bit not set, set
l* register otherwise
bsf l4, 2
btfsc LED, 3 ; skip if the 1st bit not set, set l* register otherwise
bsf
14, 3
return
regLight_5
; check the led register and log the info onto the l* register
; the l* register already cleared if the light is present
btfsc LED, 1 ; skip if the 1st bit not set, set l* register otherwise
bsf l5, 1
btfsc LED, 2 ; skip if the 1st bit not set, set l* register otherwise
bsf l5, 2
btfsc LED, 3 ; skip if the 1st bit not set, set l* register otherwise
bsf l5, 3
return
regLight_6
; check the led register and log the info onto the l* register
; the l* register already cleared if the light is present
btfsc LED, 1 ; skip if the 1st bit not set, set l* register otherwise
bsf l6, 1
btfsc LED, 2 ; skip if the 1st bit not set, set l* register otherwise
bsf l6, 2
btfsc LED, 3 ; skip if the 1st bit not set, set l* register otherwise bsf l6, 3 return
regLight_7
; check the led register and log the info onto the l* register
; the l* register already cleared if the light is present
btfsc LED, 1 ; skip if the 1st bit not set, set l* register otherwise
bsf l7, 1
btfsc LED, 2 ; skip if the 1st bit not set, set l* register otherwise
bsf l7, 2
btfsc LED, 3 ; skip if the 1st bit not set, set l* register otherwise
bsf l7, 3
return
regLight_8
; check the led register and log the info onto the $l *$ register
; the l* register already cleared if the light is present
btfsc LED, 1 ; skip if the 1st bit not set, set l* register otherwise
bsf l8, 1
btfsc LED, 2 ; skip if the 1st bit not set, set l* register otherwise
bsf 18, 2
btfsc LED, 3 ; skip if the 1st bit not set, set l* register otherwise
bsf 18, 3
return
regLight_9
; check the led register and log the info onto the l* register
; the l* register already cleared if the light is present
btfsc LED, 1 ; skip if the 1st bit not set, set l* register otherwise bsf 19, 1
btfsc LED, 2 ; skip if the 1st bit not set, set l* register otherwise
bsf 19, 2
btfsc LED, 3 ; skip if the 1st bit not set, set l* register otherwise bsf 19, 3
return
: $* ~$
; Result checking

checkLog
call RESULTS
delayForTimeInterval 6
goto DisplayOptions
logLight_1
; provide the logging funcion of reading and parsing each l* register

| btfsc
 movlw
 btfsc "N"
 movlw "L, 1 | | |
| :--- | :--- | :--- |
| | | |

```
btfsc l1, 2
movlw
btfsc
movlw
    "F"
    l1, 3
    "P"
call WR_DATA
return
logLight_2
    ; provide the logging funcion of reading and parsing
each l* register
\begin{tabular}{|c|c|}
\hline btfsc & 12, \\
\hline movlw & "N" \\
\hline btfsc & l2, \\
\hline movlw & "L" \\
\hline btfsc & l2, \\
\hline movlw & "F" \\
\hline btfsc & 12, 3 \\
\hline movlw & "P" \\
\hline all WR & \\
\hline return & \\
\hline
\end{tabular}
logLight_3
    ; provide the logging funcion of reading and parsing
each l* register
    btfsc
    movlw
    btfsc
    movlw
    btfsc
    movlw
    btfsc l3, 3
    movlw
    call WR_DATA
    return
logLight_4
    ; provide the logging funcion of reading and parsing
each l* register
        btfsc
        movlw
        btfsc
        movlw
        btfsc
        movlw
        btfsc
        movlw
            14, 0
        "N'
            14, 1
        "L'
            14, 2
        "F"
        14, 3
    "p"
```

call WR_DATA
return
logLight_5
; provide the logging funcion of reading and parsing each l* register
btfsc 15, 0
movlw
btfsc
movlw
btfsc
movlw
btfsc
movlw
call WR_DATA
return
logLight_6
; provide the logging funcion of reading and parsing each l* register
btfsc
movlw
btfsc
movlw
btfsc
movlw
btfsc
movlw
call WR_DATA
return
logLight_7
; provide the logging funcion of reading and parsing each l* register

| btfsc | 17, 0 |
| :---: | :---: |
| movlw | "N" |
| btfsc | 17, 1 |
| movlw | "L" |
| btfsc | 17, 2 |
| movlw | "F" |
| btfsc | 17, 3 |
| movlw | "P" |
| call WR_DATA | |
| return | |

logLight_8

```
    ; provide the logging funcion of reading and parsing
each l* register
    btfsc l8, 0
    movlw
    btfsc
    movlw
    btfsc
    movlw
    btfsc
    movlw
    call WR_DATA
return
```

logLight_9
; provide the logging funcion of reading and parsing
each l* register
btfsc
movlw
19, 0
btfsc
movlw
btfsc
movlw
btfsc
movlw
call WR_DATA
return
logLights
call logLight_1
call logLight_2
call logLight_3
call logLight_4
call logLight_5
call logLight_6
call logLight_7
call logLight_8
call logLight_9
return
; ***************************************
; REEPROM module
; ***************************************
writeEEPROM
; you have to set the EADDR register yourslef in the code
; you have to set the EDATA by yourself

```
banksel EECON1
bsf STATUS, RP1
bsf STATUS, RP0
; bank3
btfsc EECON1, WR
; wait for write to finish
goto
$-1
banksel EEADR
bcf STATUS, RP1 ; bank2
movf EADDR, W
movwf EEADR
movf EDATA, W
movwf EEDATA
bsf STATUS, RP1 ; bank3
bcf EECON1, EEPGD
bsf EECON1, WREN
bcf INTCON, GIE
movlw 0x55
movwf EECON2
movlw 0xAA
movwf EECON2
bsf EECON1, WR
bsf INTCON, GIE
btfsc EECON1, WR ; wait for write to finish
goto $-1
banksel PORTA
return
readEEPROM
; set the EADDR to read, output data to W
banksel EEDATA
movf EADDR, W
movwf EEADR
banksel EECON1
bsf EECON1, RD
banksel EEDATA
movf EEDATA, W
```

```
banksel PORTA
return
loadEEPROM_1
; set the run number
movlw b'00000001'
movwf EDATA
movlw 0x00
movwf EADDR
call writeEEPROM
; set the light parameters
movf l1, W
movwf EDATA
movlw 0x01
movwf EADDR
call writeEEPROM
movf l2, W
movwf EDATA
movlw 0x02
movwf EADDR
call writeEEPROM
movf l3, W
movwf EDATA
movlw 0x03
movwf EADDR
call writeEEPROM
movf l4, W
movwf EDATA
movlw 0x04
movwf EADDR
call writeEEPROM
movf l5, W
movwf EDATA
movlw 0x05
movwf EADDR
call writeEEPROM
movf l6, W
movwf EDATA
movlw 0x06
movwf EADDR
```

```
call writeEEPROM
movf l7, W
movwf EDATA
movlw 0x07
movwf EADDR
call writeEEPROM
movf l8, W
movwf EDATA
movlw 0x08
movwf EADDR
call writeEEPROM
movf l9, W
movwf EDATA
movlw 0x09
movwf EADDR
call writeEEPROM
\begin{tabular}{ll}
; set the time used \\
movf & totalSecond, w \\
movwf & EDATA \\
movlw & \(0 \times 0 A\) \\
movwf & EADDR \\
call & writeEEPROM
\end{tabular}
    ; set the number of lights
movf LED_Counter, W
movwf EDATA
movlw 0x0B
movwf EADDR
call writeEEPROM
return
readEEPROM_1
; read the registeres, and load into corresponding reg
; read turn
movlw 0x00
movwf EADDR
call readEEPROM
movwf turn
```

```
; read lights
```

; read lights
movlw 0x01

```
movlw 0x01
```

| movwf
 call
 movwf | EADDR |
| :--- | :--- |
| movlw | readEEPROM |
| movwf
 call
 movwf | 0×02 |
| | EADDR |
| | 12 |

| movlw | 0×03 |
| :--- | :--- |
| movwf | EADDR |
| call | readEEPROM |
| movwf | 13 |

| movlw | 0×04 |
| :--- | :--- |
| movwf | EADDR |
| call | readEEPROM |
| movwf | 14 |

| movlw | 0×05 |
| :--- | :--- |
| movwf | EADDR |
| call | readEEPROM |
| movwf | 15 |

| movlw | 0×06 |
| :--- | :--- |
| movwf | EADDR |
| call | readEEPROM |
| movwf | 16 |

| movlw | 0×07 |
| :--- | :--- |
| movwf | EADDR |
| call | readEEPROM |
| movwf | 17 |

| movlw | 0×08 |
| :--- | :--- |
| movwf | EADDR |
| call | readEEPROM |
| movwf | 18 |

| movlw | 0×09 |
| :--- | :--- |
| movwf | EADDR |
| call | readEEPROM |
| movwf | 19 |

movlw 0x0A
movwf EADDR

| call
 movwf | readEEPROM
 totalSecond |
| :--- | :--- |
| movlw | 0x0B |
| movwf | EADDR |
| call | |
| movwf | readEEPROM |
| return | LED_Counter |
| END | |

END

CD4067B, CD4097B Types

| Data sheet acquired trom Haris S |
| :--- |
| SCHSO52B-R Revised June 203 |

CMOS Analog

Multiplexers/Demultiplexers:

High-Voltage Types (20 -Volt Rating) CD4067B - Single 16-Channel Multiplexer/Demultiplexer Differentiat 8-Channel Multiplexer/Demultiplexer

- CD4067B and CD4097B CMOS

 analog multiplexers/demultiplexers* are digially controlled analog switches having low ON impedance, low OFF leakage current, and internal address decoding. In addition, the ON resistance is relatively constant over the full input-signal rangeThe CD4067B is a 16 -channel multiplexer with four binary control inputs, A, B, C,D, and an inhibit input, arranged so that any combination of the inputs selects one switch. The CD4097B is a differential 8-channel multiplexer having three binary control inputs A, B, C, and an inhibit input. The inputs permit selection of one of eight pairs of switches.
A logic " 1 " present at the inhibit input turns all channels off.

The CD4067B and CD4097B types are supplied in 24-lead hermetic dual-in-line ceramic packages (F3A suffix), 24-lead dual-in-line plastic packages (E suffix), 24-lead small-outline packages (M, M96, and NSR suffixes), and 24 -lead thin shrink small-outline packages (P and PWR suffixes).

When these devicas are used as demultiplexers the channel in/out terminals are the outputs and
the common out/in terminals are the inputs.

Recommended Operating Conditions at
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Unless Otherwise Specified)
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges. Values shown apply to all types except as

| Characteristic | Min. | Max. | Units |
| :---: | :---: | :---: | :---: |
| Supply-Voltage Range
 (TA $=$ Full Package-
 Temp. Range) | 3 | 18 | V |
| Multiplexer Switch Input
 Current Capability | - | 25 | mA |
| Output Load Resistance | 100 | - | Ω | NOTE:

In certain applications; the external load-resistor current may include both $V_{D D}$ and signal-line components. To avoid drawing $V_{O D}$ current when switch current flows into the transmission gate inputs, the voltage drop across the bidirectional switch must not exceed 0.8 volt (calculated from RON vatues shown in ELECTRICAL CHARACthrough R_{L} if the switch current flows into terminal 1 on the CD4067; terminals 1 and 17 on the CD4097.

Features:

- Low ON resistance: 125Ω (typ.) over 15 $\mathrm{V}_{\mathrm{p}-\mathrm{p}}$ signal-input range for $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=15 \mathrm{~V}$
- High OFF resistance: channel leakage of $\pm 10 \mathrm{pA}$ (typ.) @ $V_{D D}-\mathrm{V}_{S S}=10 \mathrm{~V}$
- Matched switch characteristics: RON=5 Ω (typ.)

Matched switch characteristics: $\mathrm{RON}=5 \Omega$ (t)
for $V_{D D}-\mathrm{V}_{S S}=15 \mathrm{~V}$

- Very low quiescent power dissipation under
al digital-control input and supply conditions:
$0.2 \mu \mathrm{~W}$ (typ.) @ VDD $-V_{S S}=10 \mathrm{~V}$
- Binary address decoding on chip
- 100% tested for $15-\mathrm{V}$ parametric ratings
- 100% tested for quiescent current at 20 V
stadardized
characteristics
Maximum input current of $1 \mu \mathrm{~A}$ at 18 V 00 nA at 18 V and $25^{\circ} \mathrm{C}$.
Mets all
Meets all requirements of JEDEC Tentative Standard No. 138, "Standard Specifications

Applications:

- Analog and digital multiplexing and demuftiplexing
- A/D and D/A conversion
- Signal gating

Fig. 2-CD4097 functionsl diagram.

| A | B | c | Inh | Salected Channel |
| :---: | :---: | :---: | :---: | :---: |
| X | X | x | 1 | None |
| 0 | 0 | 0 | 0 | OX, or |
| 1 | 0 | 0 | 0 | 1X, 1Y |
| 0 | 1 | 0 | 0 | 2X, 2Y |
| 1 | \dagger | 0 | 0 | $3 \mathrm{X}, 3 \mathrm{Y}$ |
| 0 | 0 | 1 | 0 | 4X, 4Y |
| 1 | 0 | 1 | 0 | 5X. 5 Y |
| 0 | \bigcirc | 1 | 0 | 6X, 6Y |
| 1 | 1 | 1 | 0 | 7X, 7Y |

Copyright © 2003, Texas Instruments Incorporated

General Purpose Silicon Rectifiers
CDMIOHIT
SMD Diodes Specialist

1N4001-G Thru. 1N4007-G

Voltage: 50 to 1000 V
Current: 1.0 A
RoHS Device

Features

-Low cost construction.
-Fast forward voltage drop.
-Low reverse leakage.
-High forward surge current capability.
-High soldering temperature guarantee: $260{ }^{\circ} \mathrm{C} / 10$ seconds, $0.375^{\prime \prime}(9.5 \mathrm{~mm})$ lead length at $5 \mathrm{lbs}(2.3 \mathrm{~kg})$ tension.

Mechanical data

-Case: transfer molded plastic, DO-41
-Epoxy: UL 94V-0 rate flame retardant
-Polarity: Indicated by cathode band
-Lead: Plated axial lead, solderable per MIL-STD202E, method 208C
-Mounting position: Any
-Weight: 0.012 ounce, 0.33 grams

Electrical Characteristics (at $\mathrm{T}_{\mathrm{A}}=25{ }^{\circ} \mathrm{C}$ unless otherwise noted)
Ratings at $25{ }^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified.
Single phase, half wave, 60 Hz , resistive or inductive load.
For capacitive load derate current by 20%.

| Parameter | | Symbol | $\begin{gathered} \text { 1N4001 } \\ -G \end{gathered}$ | $\begin{gathered} \text { 1N4002 } \\ -G \end{gathered}$ | $\begin{gathered} \text { 1N4003 } \\ -G \end{gathered}$ | $\begin{array}{\|c} \hline \text { 1N4004 } \\ -G \end{array}$ | $\begin{gathered} \text { 1N4005 } \\ -G \end{gathered}$ | $\begin{gathered} \text { 1N4006 } \\ -G \end{gathered}$ | $\begin{gathered} \text { 1N4007 } \\ -G \end{gathered}$ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum Repetitive Peak Reverse Voltage | | $V_{\text {RrM }}$ | 50 | 100 | 200 | 400 | 600 | 800 | 1000 | v |
| Maximum RMS Voltage | | $V_{\text {rms }}$ | 35 | 70 | 140 | 280 | 420 | 560 | 700 | V |
| Maximum DC Blocking Voltage | | Voc | 50 | 100 | 200 | 400 | 600 | 800 | 1000 | V |
| Maximum Average Forward Rectified Current $0.375^{\prime \prime}(9.5 \mathrm{~mm})$ Lead Length @ $T_{A}=55{ }^{\circ} \mathrm{C}$ | | l(Av) | 1.0 | | | | | | | A |
| Peak Forward Surge Current, 8.3 mS single half sine-wave superimposed on rated load (JEDEC method) | | Ifsm | 30 | | | | | | | A |
| Maximum Instantaneous Forward Voltage @1.0A | | V_{F} | 1.1 | | | | | | | V |
| Maximum DC Reverse Current at Rated DC Blocking voltage per element | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | 1 l | 5.0 | | | | | | | $\mu \mathrm{A}$ |
| | $\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$ | | | | | 50 | | | | |
| Maximum Full Load Reverse Current,full cycle average $0.375^{\prime \prime}(9.5 \mathrm{~mm})$ lead length at $\mathrm{TL}=75^{\circ} \mathrm{C}$ | | $\mathrm{I}_{\text {R(AV) }}$ | 30 | | | | | | | $\mu \mathrm{A}$ |
| Typical Junction Capacitance (Note 1) | | C」 | 15 | | | | | | | PF |
| Typical Thermal Resistance (Note 2) | | Reja | 60 | | | | | | | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Operating Temperature Range | | TJ | $-55 \sim+150$ | | | | | | | ${ }^{\circ} \mathrm{C}$ |
| Storage Ttemperature Range | | Tste | $-55 \sim+150$ | | | | | | | ${ }^{\circ} \mathrm{C}$ |

NOTES

1. Measured at 1.0 MHz and Applied Reverse Voltage of 4.0 V DC.
2. Thermal Resistance from junction to terminal $6.0 \mathrm{~mm}^{2}$ copper pads to each terminal.

General Purpose Silicon Rectifiers
COMICHIT
SMD Diodes Specialist
Rating and Characteristic Curves (1N4001-G Thru. 1N4007-G)

- Typical $\mathrm{t}_{\mathrm{pd}}=8 \mathrm{~ns}$
- $\pm 4-\mathrm{mA}$ Output Drive at 5 V
- Low Input Current of $1 \mu \mathrm{~A}$ Max
- Wide Operating Voltage Range of 2 V to 6 V
- Outputs Can Drive Up To 10 LSTTL Loads
- Low Power Consumption, 20- $\mu \mathrm{A}$ Max ICC

SN54HC00 . . . J OR W PACKAGE
SN74HC00... D, DB, N, NS, OR PW PACKAGE (TOP VIEW)
 (TOP VIEW)

NC - No internal connection

description/ordering information

The 'HC00 devices contain four independent 2-input NAND gates. They perform the Boolean function $\mathrm{Y}=\overline{\mathrm{A} \bullet \mathrm{B}}$ or $\mathrm{Y}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$ in positive logic.

ORDERING INFORMATION

| TA | PACKAGE \dagger | | ORDERABLE PART NUMBER | TOP-SIDE MARKING |
| :---: | :---: | :---: | :---: | :---: |
| $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | PDIP - N | Tube of 25 | SN74HC00N | SN74HC00N |
| | SOIC - D | Tube of 50 | SN74HC00D | HCOO |
| | | Reel of 2500 | SN74HC00DR | |
| | | Reel of 250 | SN74HC00DT | |
| | SOP - NS | Reel of 2000 | SN74HC00NSR | HCOO |
| | SSOP - DB | Reel of 2000 | SN74HC00DBR | HC00 |
| | TSSOP - PW | Tube of 90 | SN74HC00PW | HCOO |
| | | Reel of 2000 | SN74HC00PWR | |
| | | Reel of 250 | SN74HC00PWT | |
| $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ | CDIP - J | Tube of 25 | SNJ54HC00J | SNJ54HC00J |
| | CFP - W | Tube of 150 | SNJ54HC00W | SNJ54HC00W |
| | LCCC - FK | Tube of 55 | SNJ54HC00FK | SNJ54HC00FK |

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Copyright © 2003, Texas Instruments Incorporated On products compliant tomLL-PRF-38535, all parameters are tested
unless otherwise noted. On all other products, production unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.

SN54HC00, SN74HC00

QUADRUPLE 2-INPUT POSITIVE-NAND GATES

SCLS181E - DECEMBER 1982 - REVISED AUGUST 2003

| FUNCTION TABLE
 (each gate) | |
| :---: | :---: |
| INPUTS OUTPUT
 A B Y
 H H L
 L X H
 X L H | |

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

| Supply voltage range, V | -0.5 V to 7 V |
| :---: | :---: |
| Input clamp current, $\mathrm{I}_{\mathrm{I}}\left(\mathrm{V}_{\mathrm{I}}<0\right.$ or $\left.\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}\right)$ (see Note 1) | $\pm 20 \mathrm{~mA}$ |
| Output clamp current, $\mathrm{l}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right.$ or $\left.\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}\right)$ (see Note 1) | . $\pm 20 \mathrm{~mA}$ |
| Continuous output current, $\mathrm{I}_{\mathrm{O}}\left(\mathrm{V}_{\mathrm{O}}=0\right.$ to $\left.\mathrm{V}_{\mathrm{CC}}\right)$ | $\pm 25 \mathrm{~mA}$ |
| Continuous current through $\mathrm{V}_{C C}$ or GND | $\pm 50 \mathrm{~mA}$ |
| Package thermal impedance, $\theta_{\text {JA }}$ (see Note 2): D package | $86^{\circ} \mathrm{C} / \mathrm{W}$ |
| DB package | $96^{\circ} \mathrm{C} / \mathrm{W}$ |
| N package | $80^{\circ} \mathrm{C} / \mathrm{W}$ |
| NS package | $76^{\circ} \mathrm{C} / \mathrm{W}$ |
| PW package | $113^{\circ} \mathrm{C} / \mathrm{W}$ |

Storage temperature range, $\mathrm{T}_{\text {stg }}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)

| | | | SN54HC00 | | | SN74HC00 | | | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | MIN | NOM | MAX | MIN | NOM | MAX | |
| VCC | Supply voltage | | 2 | 5 | 6 | 2 | 5 | 6 | V |
| V_{IH} | High-level input voltage | $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ | 1.5 | | | 1.5 | | | V |
| | | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 3.15 | | | 3.15 | | | |
| | | $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$ | 4.2 | | | 4.2 | | | |
| $\mathrm{V}_{\text {IL }}$ | Low-level input voltage | $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ | | | 0.5 | | | 0.5 | V |
| | | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | | | 1.35 | | | 1.35 | |
| | | $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$ | | | 1.8 | | | 1.8 | |
| V_{1} | Input voltage | | 0 | | V_{CC} | 0 | | V_{CC} | V |
| V_{O} | Output voltage | | 0 | | V_{CC} | 0 | | V_{CC} | V |
| $\Delta t / \Delta v$ | Input transition rise/fall time | $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ | | | 1000 | | | 1000 | ns |
| | | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | | | 500 | | | 500 | |
| | | $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$ | | | 400 | | | 400 | |
| T_{A} | Operating free-air temperature | | -55 | | 125 | -40 | | 85 | ${ }^{\circ} \mathrm{C}$ |

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

LM158/LM258/LM358/LM2904 Low Power Dual Operational Amplifiers

Check for Samples: LM158-N, LM258-N, LM2904-N, LM358-N

FEATURES

- Available in 8-Bump DSBGA ChipSized Package, (See AN-1112 (SNVA009))
- Internally Frequency Compensated for Unity Gain
- Large DC Voltage Gain: 100 dB
- Wide Bandwidth (Unity Gain): $1 \mathbf{M H z}$ (Temperature Compensated)
- Wide Power Supply Range:
- Single Supply: 3V to 32V
- Or Dual Supplies: $\pm 1.5 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$
- Very Low Supply Current Drain (500 $\mu \mathrm{A})$-Essentially Independent of Supply Voltage
- Low Input Offset Voltage: $2 \mathbf{m V}$
- Input Common-Mode Voltage Range Includes Ground
- Differential Input Voltage Range Equal to the Power Supply Voltage
- Large Output Voltage Swing

UNIQUE CHARACTERISTICS

- In the Llinear Mode the Input Common-Mode Voltage Range Includes Ground and the Output Voltage Can Also Swing to Ground, even though Operated from Only a Single Power Supply Voltage.
- The Unity Gain Cross Frequency is Temperature Compensated.
- The Input Bias Current is also Temperature Compensated.

ADVANTAGES

- Two Internally Compensated Op Amps
- Eliminates Need for Dual Supplies
- Allows Direct Sensing Near GND and Vout Also Goes to GND
- Compatible with All Forms of Logic
- Power Drain Suitable for Battery Operation

DESCRIPTION

The LM158 series consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.
Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM158 series can be directly operated off of the standard +5 V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional $\pm 15 \mathrm{~V}$ power supplies.
The LM358 and LM2904 are available in a chip sized package (8-Bump DSBGA) using TI's DSBGA package technology.

[^0]
LM158-N, LM258-N, LM2904-N, LM358-N

SNOSBT3H-JANUARY 2000-REVISED MARCH 2013 www.ti.com

Voltage Controlled Oscillator (VCO)

[^1]ATX12V Power Supply Design Guide

3.1.5. Catastrophic Failure Protection

Should a component failure occur, the power supply should not exhibit any of the following:

- Flame
- Excessive smoke
- Charred РСВ
- Fused PCB conductor
- Startling noise
- Emission of molten material

3.2. DC Output

3.2.1. DC Voltage Regulation

The DC output voltages shall remain within the regulation ranges shown in Table 2 when measured at the load end of the output connectors under all line, load, and environmental conditions. The voltage regulation limits shall be maintained under continuous operation for any steady state temperature and operating conditions specified in Section 5.

Table 2. DC Output Voltage Regulation

| Output | Range | Min. | Nom. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| +12 V 1 DC | $\pm 5 \%$ | +11.40 | +12.00 | +12.60 | Volts |
| +12 V 2 DC | | | | | |
| +5 VDC | $\pm 5 \%$ | +11.40 | +12.00 | +12.60 | Volts |
| +3.3 VDC | | | | | |
| -12 VDC | $\pm 5 \%$ | +4.75 | +5.00 | +5.25 | Volts |
| +5 VSB | $\pm 5 \%$ | +3.14 | +3.30 | +3.47 | Volts |
| ${ }^{(1)} \mathrm{At}+12 \mathrm{VDC}$ | peak loading, regulation at the +12 VDC output can go to $\pm 10 \%$. | | | | |

[^2]

Figure 10. ATX12V Power Supply Connectors
(Pin-side view, not to scale)

BPW34, BPW34S

Silicon PIN Photodiode

FEATURES

- Package type: leaded
- Package form: top view
- Dimensions ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ in mm): $5.4 \times 4.3 \times 3.2$
- Radiant sensitive area (in mm^{2}): 7.5
- High photo sensitivity
- High radiant sensitivity
- Suitable for visible and near infrared radiation

RoHS COMPLIANT $\frac{\text { GREEN }}{(5.2008)^{* *}}$

- Fast response times
- Angle of half sensitivity: $\varphi= \pm 65^{\circ}$
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC
Note
* Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902
BPW34 is a PIN photodiode with high speed and high radiant sensitivity in miniature, flat, top view, clear plastic package. It is sensitive to visible and near infrared radiation. BPW34S is packed in tubes, specifications like BPW34.

APPLICATIONS

- High speed photo detector

| PRODUCT SUMMARY | | | |
| :--- | :---: | :---: | :---: |
| COMPONENT | $\boldsymbol{I}_{\mathbf{r a}}(\boldsymbol{\mu A})$ | $\boldsymbol{\varphi}(\mathbf{d e g})$ | $\boldsymbol{\lambda}_{0.1}(\mathbf{n m})$ |
| BPW34 | 50 | ± 65 | 430 to 1100 |
| BPW34S | 50 | ± 65 | 430 to 1100 |

Note

- Test condition see table "Basic Characteristics"

ORDERING INFORMATION

| ORDERING CODE | PACKAGING | REMARKS | PACKAGE FORM |
| :---: | :---: | :---: | :---: |
| BPW34 | Bulk | MOQ: $3000 \mathrm{pcs}, 3000 \mathrm{pcs} / \mathrm{bulk}$ | Top view |
| BPW34S | Tube | MOQ: 1800 pcs, 45 pcs/tube | Top view |

Note

- MOQ: minimum order quantity

| ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}\right.$, unless otherwise specified) | | | | |
| :--- | :---: | :---: | :---: | :---: |
| PARAMETER | TEST CONDITION | SYMBOL | VALUE | UNIT |
| Reverse voltage | | V_{R} | 60 | V |
| Power dissipation | $\mathrm{T}_{\text {amb }} \leq 25^{\circ} \mathrm{C}$ | P_{V} | 215 | mW |
| Junction temperature | | T_{j} | 100 | ${ }^{\circ} \mathrm{C}$ |
| Operating temperature range | | $\mathrm{T}_{\mathrm{amb}}$ | -40 to +100 | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature range | | $\mathrm{T}_{\text {stg }}$ | -40 to +100 | ${ }^{\circ} \mathrm{C}$ |
| Soldering temperature | $\mathrm{t} \leq 3 \mathrm{~s}$ | $\mathrm{~T}_{\text {sd }}$ | 260 | ${ }^{\circ} \mathrm{C}$ |
| Thermal resistance junction/ambient | Connected with Cu wire, $0.14 \mathrm{~mm}^{2}$ | $\mathrm{R}_{\text {thJA }}$ | 350 | $\mathrm{~K} / \mathrm{W}$ |

| Rev. 2.1, 23-Aug-11 | 1 | Document Number: 81521 |
| :--- | ---: | ---: |
| THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT | | |
| | ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?9100 | |

| VISHAY | | | BPW34, BPW34S | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| www.vishay.com | | | | Vishay Semiconductors | | |
| BASIC CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified) | | | | | | |
| PARAMETER | TEST CONDITION | SYMBOL | MIN. | TYP. | MAX. | UNIT |
| Breakdown voltage | $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{E}=0$ | $\mathrm{V}_{\text {(BR) }}$ | 60 | | | V |
| Reverse dark current | $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}, \mathrm{E}=0$ | $\mathrm{I}_{\text {o }}$ | | 2 | 30 | nA |
| Diode capacitance | $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}=0$ | C_{D} | | 70 | | pF |
| | $\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{E}=0$ | C_{D} | | 25 | 40 | pF |
| Open circuit voltage | $\mathrm{E}_{\mathrm{e}}=1 \mathrm{~mW} / \mathrm{cm}^{2}, \lambda=950 \mathrm{~nm}$ | V_{0} | | 350 | | mV |
| Temperature coefficient of V_{0} | $\mathrm{E}_{\mathrm{e}}=1 \mathrm{~mW} / \mathrm{cm}^{2}, \lambda=950 \mathrm{~nm}$ | TK V_{0} | | -2.6 | | mV / K |
| Short circuit current | $\mathrm{E}_{\mathrm{A}}=1 \mathrm{klx}$ | I_{k} | | 70 | | $\mu \mathrm{A}$ |
| | $\mathrm{E}_{\mathrm{e}}=1 \mathrm{~mW} / \mathrm{cm}^{2}, \lambda=950 \mathrm{~nm}$ | I_{k} | | 47 | | $\mu \mathrm{A}$ |
| Temperature coefficient of I_{k} | $\mathrm{E}_{\mathrm{e}}=1 \mathrm{~mW} / \mathrm{cm}^{2}, \lambda=950 \mathrm{~nm}$ | TK ${ }_{\text {lk }}$ | | 0.1 | | \%/K |
| Reverse light current | $\mathrm{E}_{\mathrm{A}}=1 \mathrm{klx}, \mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ | I_{ra} | | 75 | | $\mu \mathrm{A}$ |
| | $\begin{gathered} \mathrm{E}_{\mathrm{e}}=1 \mathrm{~mW} / \mathrm{cm}^{2}, \lambda=950 \mathrm{~nm}, \\ \mathrm{~V}_{\mathrm{R}}=5 \mathrm{~V} \end{gathered}$ | I_{ra} | 40 | 50 | | $\mu \mathrm{A}$ |
| Angle of half sensitivity | | φ | | ± 65 | | deg |
| Wavelength of peak sensitivity | | λ_{p} | | 900 | | nm |
| Range of spectral bandwidth | | $\lambda_{0.1}$ | | 430 to 1100 | | nm |
| Noise equivalent power | $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}, \lambda=950 \mathrm{~nm}$ | NEP | | 4×10^{-14} | | $\mathrm{W} / \sqrt{ } \mathrm{Hz}$ |
| Rise time | $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \lambda=820 \mathrm{~nm}$ | t_{r} | | 100 | | ns |
| Fall time | $\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \lambda=820 \mathrm{~nm}$ | t_{f} | | 100 | | ns |

BASIC CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Fig. 1 - Reverse Dark Current vs. Ambient Temperature

Fig. 2 - Relative Reverse Light Current vs. Ambient Temperature

FAIRCHILD

SEMICONDUCTOR*

TIP140T/141T/142T

Monolithic Construction With Built In BaseEmitter Shunt Resistors

- High DC Current Gain : $\mathrm{h}_{\mathrm{FE}}=1000 @ \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A}$ (Min.)
- Industrial Use
- Complement to TIP145T/146T/147T

NPN Epitaxial Silicon Darlington Transistor

1.Base 2.Collector 3.Emitter

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

| Symbol | Parameter | Value | Units |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CBO }}$ | Collector-Base Voltage | 60 | V |
| | | 80 | V |
| | | 100 | V |
| $\mathrm{V}_{\text {CEO }}$ | Collector-Emitter Voltage : TIP140T
 $:$ TIP141T
 $:$ TIP142T | 60 | V |
| | | 80 | V |
| | | 100 | V |
| $\mathrm{V}_{\text {EBO }}$ | Emitter-Base Voltage | 5 | V |
| I_{C} | Collector Current (DC) | 10 | A |
| I_{CP} | Collector Current (Pulse) | 15 | A |
| I_{B} | Base Current (DC) | 0.5 | A |
| P_{C} | Collector Dissipation ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$) | 80 | W |
| T_{J} | Junction Temperature | 150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {STG }}$ | Storage Temperature | -65~150 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

| Symbol | Parameter | Test Condition | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CEO }}$ (sus) | Collector-Emitter Sustaining Voltage $:$ TIP140T $:$ TIP141T $:$ TIP142T | $\mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$ | $\begin{array}{r} 60 \\ 80 \\ 100 \end{array}$ | | | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$ |
| $I_{\text {CEO }}$ | Collector Cut-off Current
 $:$ TIP140T
 $:$ TIP141T
 $:$ TIP142T | $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{~V}_{\mathrm{CE}}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{~V}_{\mathrm{CE}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \end{aligned}$ | | | $\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$ | mA
 mA
 mA |
| $\mathrm{I}_{\text {CBO }}$ | Collector Cut-off Current
 $:$ TIP140T
 $:$ TIP141T
 : TIP142T | $\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \\ & \mathrm{~V}_{\mathrm{CB}}=80 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \\ & \mathrm{~V}_{\mathrm{CB}}=100 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \end{aligned}$ | | | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$ |
| $\mathrm{I}_{\text {EBO }}$ | Emitter Cut-off Current | $\mathrm{V}_{\mathrm{BE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$ | | | 2 | mA |
| $\mathrm{h}_{\text {FE }}$ | DC Current Gain | $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A} \end{aligned}$ | $\begin{gathered} 1000 \\ 500 \end{gathered}$ | | | mA |
| $\mathrm{V}_{\text {CE }}$ (sat) | Collector-Emitter Saturation Voltage | $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=40 \mathrm{~mA} \end{aligned}$ | | | $\begin{aligned} & 2 \\ & 3 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\text {BE }}$ (sat) | Base-Emitter Saturation Voltage | $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=40 \mathrm{~mA}$ | | | 3.5 | V |
| V_{BE} (on) | Base-Emitter On Voltage | $\mathrm{V}_{\mathrm{CE}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A}$ | | | 3 | V |
| t_{D} | Delay Time | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B} 1}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{B} 2}=-20 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{L}}=6 \Omega \end{aligned}$ | | 0.15 | | $\mu \mathrm{S}$ |
| t_{R} | Rise Time | | | 0.55 | | $\mu \mathrm{S}$ |
| $\mathrm{t}_{\text {STG }}$ | Storage Time | | | 2.5 | | $\mu \mathrm{s}$ |
| $t_{\text {F }}$ | Fall Time | | | 2.5 | | $\mu \mathrm{s}$ |

@2002 Fairchild Semiconductor Corporation
Rev. B1, December 2002

Figure 1. Static Characteristic

Figure 3. Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage

Figure 5. Safe Operating Area

FAIRCHILD

SEMICONDUCTOR:

TIP145T/146T/147T

Monolithic Construction With Built In BaseEmitter Shunt Resistors

- High DC Current Gain : $\mathrm{h}_{\mathrm{FE}}=1000 @ \mathrm{~V}_{\mathrm{CE}}=-4 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~A}$ (Min.)
- Industrial Use
- Complement to TIP140T/141T/142T

PNP Epitaxial Silicon Darlington Transistor

1.Base 2.Collector 3.Emitter

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

| Symbol | Parameter | Value | Units |
| :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CBO }}$ | Collector-Base Voltage | -60 | V |
| | | -80 | V |
| | | - 100 | V |
| $\mathrm{V}_{\text {CEO }}$ | Collector-Emitter Voltage : | -60 | V |
| | | - 80 | V |
| | | - 100 | V |
| $\mathrm{V}_{\text {EBO }}$ | Emitter-Base Voltage | -5 | V |
| I_{C} | Collector Current (DC) | -10 | A |
| I_{CP} | Collector Current (Pulse) | -15 | A |
| I_{B} | Base Current (DC) | -0.5 | A |
| P_{C} | Collector Dissipation ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$) | 80 | W |
| T_{J} | Junction Temperature | 150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {STG }}$ | Storage Temperature | -65~150 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

| Symbol | Parameter | Test Condition | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CEO }}$ (sus) | Collector-Emitter Sustaining Voltage
 $:$ TIP145T
 $:$ TIP146T
 $:$ TIP147T | $\mathrm{I}_{\mathrm{C}}=-30 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$ | $\begin{array}{r} -60 \\ -80 \\ -100 \end{array}$ | | | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$ |
| $I_{\text {CEO }}$ | Collector Cut-off Current
 $:$ TIP145T
 $:$ TIP146T
 : TIP147T | $\begin{aligned} & V_{C E}=-30 V, I_{B}=0 \\ & V_{C E}=-40 V, I_{B}=0 \\ & V_{C E}=-50 V, I_{B}=0 \end{aligned}$ | | | $\begin{aligned} & -2 \\ & -2 \\ & -2 \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$ |
| $\mathrm{I}_{\text {CBO }}$ | Collector Cut-off Current
 $:$ TIP145T
 $:$ TIP146T
 : TIP147T | $\begin{aligned} & V_{C B}=-60 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \\ & \mathrm{~V}_{\mathrm{CB}}=-80 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \\ & \mathrm{~V}_{\mathrm{CB}}=-100 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \end{aligned}$ | | | $\begin{aligned} & -1 \\ & -1 \\ & -1 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$ |
| $\mathrm{I}_{\text {EBO }}$ | Emitter Cut-off Current | $\mathrm{V}_{\mathrm{BE}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$ | | | -2 | mA |
| $\mathrm{h}_{\text {FE }}$ | DC Current Gain | $\begin{aligned} & V_{C E}=-4 V, I_{C}=-5 \mathrm{~A} \\ & V_{C E}=-4 V, I_{C}=-10 \mathrm{~A} \end{aligned}$ | $\begin{array}{r} 1000 \\ 500 \\ \hline \end{array}$ | | | |
| $\mathrm{V}_{\text {CE }}$ (sat) | Collector-Emitter Saturation Voltage | $\begin{aligned} & I_{C}=-5 A, I_{B}=-10 \mathrm{~mA} \\ & I_{C}=-10 \mathrm{~A}, I_{B}=-40 \mathrm{~mA} \end{aligned}$ | | | $\begin{aligned} & -2 \\ & -3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\text {BE }}$ (sat) | Base-Emitter Saturation Voltage | $\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-40 \mathrm{~mA}$ | | | -3.5 | V |
| V_{BE} (on) | Base-Emitter On Voltage | $\mathrm{V}_{C E}=-4 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~A}$ | | | -3 | V |
| t_{D} | Delay Time | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=-30 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B} 1}=-20 \mathrm{~mA}, I_{\mathrm{B} 2}=20 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{L}}=6 \Omega \end{aligned}$ | | 0.15 | | $\mu \mathrm{s}$ |
| t_{R} | Rise Time | | | 0.55 | | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {STG }}$ | Storage Time | | | 2.5 | | $\mu \mathrm{S}$ |
| $t_{\text {F }}$ | Fall Time | | | 2.5 | | $\mu \mathrm{s}$ |

@2002 Fairchild Semiconductor Corporation
Rev. B, December 2002

maxim
integrated $_{m}$

64×8, Serial, I^{2} C Real-Time Clock

GENERAL DESCRIPTION

The DS1307 serial real-time clock (RTC) is a lowpower, full binary-coded decimal (BCD) clock/calendar plus 56 bytes of NV SRAM. Address and data are transferred serially through an $I^{2} \mathrm{C}$, bidirectional bus. The clock/calendar provides seconds, minutes, hours, day, date, month, and year information. The end of the month date is automatically adjusted for months with fewer than 31 days, including corrections for leap year. The clock operates in either the 24-hour or 12hour format with AM/PM indicator. The DS1307 has a built-in power-sense circuit that detects power failures and automatically switches to the backup supply. Timekeeping operation continues while the part operates from the backup supply.

TYPICAL OPERATING CIRCUIT

FEATURES

- Real-Time Clock (RTC) Counts Seconds, Minutes, Hours, Date of the Month, Month, Day of the week, and Year with Leap-Year
Compensation Valid Up to 2100
- 56-Byte, Battery-Backed, General-Purpose RAM with Unlimited Writes
- $\quad I^{2} C$ Serial Interface
- Programmable Square-Wave Output Signal
- Automatic Power-Fail Detect and Switch Circuitry
- Consumes Less than 500 nA in Battery-Backup

Mode with Oscillator Running

- Optional Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Available in 8-Pin Plastic DIP or SO
- Underwriters Laboratories (UL) Recognized

PIN CONFIGURATIONS

| TOP VIEW | | | |
| :---: | :---: | :---: | :---: |
| | $7 \mathrm{~V}_{\text {cc }}$ | | $\square \mathrm{V}^{\text {c }}$ |
| X2四 | mSQW/ | X2■ | $\square \mathrm{s}$ |
| $\mathrm{V}_{\text {BAT }}$ 罒 | TISCL | $\mathrm{V}_{\text {BAT }} \square$ | - |
| GNDM | mSDA | GND- | चS |
| | | PDIP (300 mils) | |

ORDERING INFORMATION

| PART | TEMP RANGE | VOLTAGE (V) | PIN-PACKAGE | TOP MARK* |
| :--- | :---: | :---: | :--- | :--- |
| DS1307+ | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 5.0 | 8 PDIP $(300$ mils $)$ | DS1307 |
| DS1307N + | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 5.0 | 8 PDIP $(300 \mathrm{mils})$ | DS1307N |
| DS1307Z + | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 5.0 | 8 SO $(150$ mils $)$ | DS1307 |
| DS1307ZN + | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 5.0 | 8 SO $(150$ mils $)$ | DS1307N |
| DS1307Z + T\&R | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 5.0 | 8 SO $(150$ mils $)$ Tape and Reel | DS1307 |
| DS1307ZN + T\&R | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 5.0 | 8 SO $(150$ mils $)$ Tape and Reel | DS1307N |

+Denotes a lead-free/RoHS-compliant package.

* A " + " anywhere on the top mark indicates a lead-free package. An " N " anywhere on the top mark indicates an industrial temperature range device.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

28/40-Pin 8-Bit CMOS FLASH Microcontrollers

Devices Included in this Data Sheet:

| - PIC16F873 | - PIC16F876 |
| :--- | :--- |
| - PIC16F874 | - PIC16F877 |

Microcontroller Core Features:

- High performance RISC CPU
- Only 35 single word instructions to learn
- All single cycle instructions except for program branches which are two cycle
- Operating speed: DC - 20 MHz clock input

$$
\text { DC - } 200 \text { ns instruction cycle }
$$

- Up to $8 \mathrm{~K} \times 14$ words of FLASH Program Memory, Up to 368×8 bytes of Data Memory (RAM)
Up to 256×8 bytes of EEPROM Data Memory
- Pinout compatible to the PIC16C73B/74B/76/77
- Interrupt capability (up to 14 sources)
- Eight level deep hardware stack
- Direct, indirect and relative addressing modes
- Power-on Reset (POR)
- Power-up Timer (PWRT) and

Oscillator Start-up Timer (OST)

- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code protection
- Power saving SLEEP mode
- Selectable oscillator options
- Low power, high speed CMOS FLASH/EEPROM technology
- Fully static design
- In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP) via two pins
- Single 5V In-Circuit Serial Programming capability
- In-Circuit Debugging via two pins
- Processor read/write access to program memory
- Wide operating voltage range: 2.0 V to 5.5 V
- High Sink/Source Current: 25 mA
- Commercial, Industrial and Extended temperature ranges
- Low-power consumption:
- <0.6 mA typical @ 3V, 4 MHz
- $20 \mu \mathrm{~A}$ typical @ 3V, 32 kHz
- $<1 \mu \mathrm{~A}$ typical standby current

Pin Diagram

Peripheral Features:

- Timer0: 8-bit timer/counter with 8-bit prescaler
- Timer1: 16-bit timer/counter with prescaler, can be incremented during SLEEP via external crystal/clock
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Two Capture, Compare, PWM modules
- Capture is 16 -bit, max. resolution is 12.5 ns
- Compare is 16 -bit, max. resolution is 200 ns
- PWM max. resolution is 10-bit
- 10-bit multi-channel Analog-to-Digital converter
- Synchronous Serial Port (SSP) with SPI ${ }^{\text {TM }}$ (Master mode) and $I^{2} \mathrm{C}^{T M}$ (Master/Slave)
- Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI) with 9-bit address detection
- Parallel Slave Port (PSP) 8-bits wide, with external $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ and $\overline{\mathrm{CS}}$ controls (40/44-pin only)
- Brown-out detection circuitry for

Brown-out Reset (BOR)

PIC16F87X

TABLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION

| Pin Name | $\begin{aligned} & \hline \text { DIP } \\ & \text { Pin\# } \end{aligned}$ | PLCC
 Pin\# | $\begin{aligned} & \hline \text { QFP } \\ & \text { Pin\# } \end{aligned}$ | I/O/P
 Type | Buffer Type | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OSC1/CLKIN | 13 | 14 | 30 | 1 | ST/CMOS ${ }^{(4)}$ | Oscillator crystal input/external clock source input. |
| OSC2/CLKOUT | 14 | 15 | 31 | 0 | - | Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has $1 / 4$ the frequency of OSC1, and denotes the instruction cycle rate. |
| $\overline{\text { MCLR/VPP }}$ | 1 | 2 | 18 | I/P | ST | Master Clear (Reset) input or programming voltage input. This pin is an active low RESET to the device. |
| | | | | | | PORTA is a bi-directional I/O port. |
| RAO/ANO | 2 | 3 | 19 | I/O | TTL | RAO can also be analog input0. |
| RA1/AN1 | 3 | 4 | 20 | I/O | TTL | RA1 can also be analog input1. |
| RA2/AN2/VREF- | 4 | 5 | 21 | I/O | TTL | RA2 can also be analog input2 or negative analog reference voltage. |
| RA3/AN3/VREF+ | 5 | 6 | 22 | I/O | TTL | RA3 can also be analog input3 or positive analog reference voltage. |
| RA4/T0CKI | 6 | 7 | 23 | I/O | ST | RA4 can also be the clock input to the Timer0 timer/ counter. Output is open drain type. |
| RA5/SS/AN4 | 7 | 8 | 24 | I/O | TTL | RA5 can also be analog input4 or the slave select for the synchronous serial port. |
| | | | | | | PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs. |
| RBO/INT | 33 | 36 | 8 | I/O | TTL/ST ${ }^{(1)}$ | RB0 can also be the external interrupt pin. |
| RB1 | 34 | 37 | 9 | I/O | TTL | |
| RB2 | 35 | 38 | 10 | I/O | TTL | |
| RB3/PGM | 36 | 39 | 11 | I/O | TTL | RB3 can also be the low voltage programming input. |
| RB4 | 37 | 41 | 14 | I/O | TTL | Interrupt-on-change pin. |
| RB5 | 38 | 42 | 15 | I/O | TTL | Interrupt-on-change pin. |
| RB6/PGC | 39 | 43 | 16 | I/O | TTL/ST ${ }^{(\mathbf{2})}$ | Interrupt-on-change pin or In-Circuit Debugger pin. Serial programming clock. |
| RB7/PGD | 40 | 44 | 17 | I/O | TTL/ST ${ }^{(\mathbf{2})}$ | Interrupt-on-change pin or In-Circuit Debugger pin. Serial programming data. |
| Legend: I = input | $\begin{aligned} & \mathrm{O}=\text { output } \\ & -=\text { Not used } \end{aligned}$ | | | $\begin{aligned} & \text { I/O = input/output } \\ & \text { TTL = TTL input } \end{aligned}$ | | $\begin{aligned} & \mathrm{P}=\text { power } \\ & \mathrm{ST}=\mathrm{Schmitt} \text { Trigger input } \end{aligned}$ |

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

PIC16F87X

TABLE 1-2: PIC16F874 AND PIC16F877 PINOUT DESCRIPTION (CONTINUED)

| Pin Name | DIP
 Pin\# | PLCC
 Pin\# | QFP
 Pin\# | I/O/P Type | Buffer Type | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RC0/T1OSO/T1CKI | 15 | 16 | 32 | I/O | ST | PORTC is a bi-directional I/O port.
 RCO can also be the Timer1 oscillator output or a Timer1 clock input. |
| RC1/T1OSI/CCP2 | 16 | 18 | 35 | I/O | ST | RC1 can also be the Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output. |
| RC2/CCP1 | 17 | 19 | 36 | I/O | ST | RC2 can also be the Capture1 input/Compare1 output/PWM1 output. |
| RC3/SCK/SCL | 18 | 20 | 37 | I/O | ST | RC3 can also be the synchronous serial clock input/ output for both SPI and $\mathrm{I}^{2} \mathrm{C}$ modes. |
| RC4/SDI/SDA | 23 | 25 | 42 | I/O | ST | RC4 can also be the SPI Data In (SPI mode) or data I/O (${ }^{2} \mathrm{C}$ mode). |
| RC5/SDO | 24 | 26 | 43 | I/O | ST | RC5 can also be the SPI Data Out (SPI mode). |
| RC6/TX/CK | 25 | 27 | 44 | I/O | ST | RC6 can also be the USART Asynchronous Transmit or Synchronous Clock. |
| RC7/RX/DT | 26 | 29 | 1 | I/O | ST | RC7 can also be the USART Asynchronous Receive or Synchronous Data. |
| | | | | | | PORTD is a bi-directional I/O port or parallel slave port when interfacing to a microprocessor bus. |
| RD0/PSP0 | 19 | 21 | 38 | I/O | ST/TTL ${ }^{(3)}$ | |
| RD1/PSP1 | 20 | 22 | 39 | I/O | ST/TTL ${ }^{(3)}$ | |
| RD2/PSP2 | 21 | 23 | 40 | I/O | ST/TTL ${ }^{(3)}$ | |
| RD3/PSP3 | 22 | 24 | 41 | I/O | ST/TTL ${ }^{(3)}$ | |
| RD4/PSP4 | 27 | 30 | 2 | I/O | ST/TTL ${ }^{(3)}$ | |
| RD5/PSP5 | 28 | 31 | 3 | I/O | ST/TTL ${ }^{(3)}$ | |
| RD6/PSP6 | 29 | 32 | 4 | I/O | ST/TTL ${ }^{(3)}$ | |
| RD7/PSP7 | 30 | 33 | 5 | I/O | ST/TTL ${ }^{(3)}$ | |
| RE0/ $\overline{\mathrm{RD}} / \mathrm{AN} 5$ | 8 | 9 | 25 | I/O | ST/TTL ${ }^{(3)}$ | PORTE is a bi-directional I/O port.
 REO can also be read control for the parallel slave port, or analog input5. |
| RE1/ $\overline{\mathrm{WR} / A N 6 ~}$ | 9 | 10 | 26 | I/O | ST/TTL ${ }^{(3)}$ | RE1 can also be write control for the parallel slave port, or analog input6. |
| RE2/ $\overline{\mathrm{CS}} / \mathrm{AN} 7$ | 10 | 11 | 27 | I/O | ST/TTL ${ }^{(3)}$ | RE2 can also be select control for the parallel slave port, or analog input7. |
| Vss | 12,31 | 13,34 | 6,29 | P | - | Ground reference for logic and I/O pins. |
| VDD | 11,32 | 12,35 | 7,28 | P | - | Positive supply for logic and I/O pins. |
| NC | - | $\begin{array}{\|c\|} \hline 1,17,28, \\ 40 \end{array}$ | $\begin{array}{\|l\|} \hline 12,13, \\ 33,34 \\ \hline \end{array}$ | | - | These pins are not internally connected. These pins should be left unconnected. |
| Legend: I = input | $\begin{aligned} & \mathrm{O}=\text { output } \\ & -=\text { Not used } \end{aligned}$ | | | I/O = input/output
 TTL = TTL input | | $\begin{aligned} & \mathrm{P}=\text { power } \\ & \mathrm{ST}=\mathrm{Schmitt} \text { Trigger input } \end{aligned}$ |

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

PIC16F87X

PIC16F87X

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1.

The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral features section.

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY

PIC16F87X

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

| Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on: POR, BOR | Details on page: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bank 1 | | | | | | | | | | | |
| $80{ }^{(3)}$ | INDF | Addressing this location uses contents of FSR to address data memory (not a physical register) | | | | | | | | 00000000 | 27 |
| 81h | OPTION_REG | $\overline{\mathrm{RBPU}}$ | INTEDG | TOCS | TOSE | PSA | PS2 | PS1 | PSO | 11111111 | 19 |
| $82 h^{(3)}$ | PCL | Program Counter (PC) Least Significant Byte | | | | | | | | 00000000 | 26 |
| $83 \mathrm{~h}^{(3)}$ | STATUS | IRP | RP1 | RP0 | TO | $\overline{\mathrm{PD}}$ | Z | DC | C | 0001 1xxx | 18 |
| $84 h^{(3)}$ | FSR | Indirect Data Memory Address Pointer | | | | | | | | xxxx xxxx | 27 |
| 85h | TRISA | - | - | PORTA Data Direction Register | | | | | | --11 1111 | 29 |
| 86h | TRISB | PORTB Data Direction Register | | | | | | | | 11111111 | 31 |
| 87h | TRISC | PORTC Data Direction Register | | | | | | | | 11111111 | 33 |
| $88 \mathrm{~h}^{(4)}$ | TRISD | PORTD Data Direction Register | | | | | | | | 11111111 | 35 |
| $89{ }^{(4)}$ | TRISE | IBF | OBF | IBOV | PSPMODE | - | PORTE Data Direction Bits | | | 0000-111 | 37 |
| $8 \mathrm{Ah}^{(1,3)}$ | PCLATH | - | - | - | Write Buffer for the upper 5 bits of the Program Counter | | | | | ---0 0000 | 26 |
| $8 \mathrm{Bh}^{(3)}$ | INTCON | GIE | PEIE | TOIE | INTE | RBIE | TOIF | INTF | RBIF | 0000 000x | 20 |
| 8Ch | PIE1 | PSPIE ${ }^{(2)}$ | ADIE | RCIE | TXIE | SSPIE | CCP1IE | TMR2IE | TMR1IE | 00000000 | 21 |
| 8Dh | PIE2 | - | (5) | - | EEIE | BCLIE | - | - | CCP2IE | $-\mathrm{r}-0 \quad 0-\mathrm{O}$ | 23 |
| 8Eh | PCON | - | - | - | - | - | - | $\overline{\text { POR }}$ | $\overline{\mathrm{BOR}}$ | ---- --qq | 25 |
| 8Fh | - | Unimplemented | | | | | | | | - | - |
| 90h | - | Unimplemented | | | | | | | | - | - |
| 91h | SSPCON2 | GCEN | ACKSTAT | ACKDT | ACKEN | RCEN | PEN | RSEN | SEN | 00000000 | 68 |
| 92h | PR2 | Timer2 Period Register | | | | | | | | 11111111 | 55 |
| 93h | SSPADD | Synchronous Serial Port ($I^{2} \mathrm{C}$ mode) Address Register | | | | | | | | 00000000 | 73, 74 |
| 94h | SSPSTAT | SMP | CKE | D/ \bar{A} | P | S | R/W | UA | BF | 00000000 | 66 |
| 95h | - | Unimplemented | | | | | | | | - | - |
| 96h | - | Unimplemented | | | | | | | | - | - |
| 97h | - | Unimplemented | | | | | | | | - | - |
| 98h | TXSTA | CSRC | TX9 | TXEN | SYNC | - | BRGH | TRMT | TX9D | 0000-010 | 95 |
| 99h | SPBRG | Baud Rate Generator Register | | | | | | | | 00000000 | 97 |
| 9Ah | - | Unimplemented | | | | | | | | - | - |
| 9 Bh | - | Unimplemented | | | | | | | | - | - |
| 9 Ch | - | Unimplemented | | | | | | | | - | - |
| 9 Dh | - | Unimplemented | | | | | | | | - | - |
| 9Eh | ADRESL | A/D Result Register Low Byte | | | | | | | | xxxx xxxx | 116 |
| 9Fh | ADCON1 | ADFM | - | - | - | PCFG3 | PCFG2 | PCFG1 | PCFG0 | 0---0000 | 112 |
| Legend: $\quad x=$ unknown, $u=$ unchanged, $q=$ value depends on condition, $-=$ unimplemented, read as ' 0 ', $r=$ rese Shaded locations are unimplemented, read as ' 0 '. | | | | | | | | | | | |
| Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> wh contents are transferred to the upper byte of the program counter.
 Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.
 These registers can be addressed from any bank.
 PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as '0'.
 PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear. | | | | | | | | | | | |

PIC16F87X

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

| Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on: POR, BOR | Details on page: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bank 2 | | | | | | | | | | | |
| $100{ }^{(3)}$ | INDF | Addressing this location uses contents of FSR to address data memory (not a physical register) | | | | | | | | 00000000 | 27 |
| 101h | TMRO | Timer0 Module Register | | | | | | | | xxxx xxxx | 47 |
| $102 h^{(3)}$ | PCL | Program Counter's (PC) Least Significant Byte | | | | | | | | 00000000 | 26 |
| $103 \mathrm{~h}^{(3)}$ | STATUS | IRP | RP1 | RPO | TO | $\overline{\mathrm{PD}}$ | Z | DC | C | 0001 1xxx | 18 |
| $104 \mathrm{~h}^{(3)}$ | FSR | Indirect Data Memory Address Pointer | | | | | | | | xxxx xxxx | 27 |
| 105h | - | Unimplemented | | | | | | | | - | - |
| 106h | PORTB | PORTB Data Latch when written: PORTB pins when read | | | | | | | | xxxx xxxx | 31 |
| 107h | - | Unimplemented | | | | | | | | - | - |
| 108h | - | Unimplemented | | | | | | | | - | - |
| 109h | - | Unimplemented | | | | | | | | - | - |
| $10 \mathrm{Ah}^{(1,3)}$ | PCLATH | - | - | - | Write Buffer for the upper 5 bits of the Program Counter | | | | | ---0 0000 | 26 |
| $10 \mathrm{Bh}{ }^{(3)}$ | INTCON | GIE | PEIE | TOIE | INTE | RBIE | TOIF | INTF | RBIF | 0000 000x | 20 |
| 10Ch | EEDATA | EEPROM Data Register Low Byte | | | | | | | | xxxx xxxx | 41 |
| 10Dh | EEADR | EEPROM Address Register Low Byte | | | | | | | | xxxx xxxx | 41 |
| 10Eh | EEDATH | - | - | EEPROM Data Register High Byte | | | | | | xxxx xxxx | 41 |
| 10Fh | EEADRH | - | - | - | EEPROM Address Register High Byte | | | | | xxxx xxxx | 41 |
| Bank 3 | | | | | | | | | | | |
| 180h ${ }^{(3)}$ | INDF | Addressing this location uses contents of FSR to address data memory (not a physical register) | | | | | | | | 00000000 | 27 |
| 181h | OPTION_REG | RBPU | INTEDG | TOCS | TOSE | PSA | PS2 | PS1 | PSO | 11111111 | 19 |
| $182 h^{(3)}$ | PCL | Program Counter (PC) Least Significant Byte | | | | | | | | 00000000 | 26 |
| $183 \mathrm{~h}^{(3)}$ | STATUS | IRP | RP1 | RP0 | TO | $\overline{\mathrm{PD}}$ | Z | DC | C | 0001 1xxx | 18 |
| $184{ }^{(3)}$ | FSR | Indirect Data Memory Address Pointer | | | | | | | | xxxx xxxx | 27 |
| 185h | - | Unimplemented | | | | | | | | - | - |
| 186h | TRISB | PORTB Data Direction Register | | | | | | | | 11111111 | 31 |
| 187h | - | Unimplemented | | | | | | | | - | - |
| 188h | - | Unimplemented | | | | | | | | - | - |
| 189h | - | Unimplemented | | | | | | | | - | - |
| $18 \mathrm{Ah}^{(1,3)}$ | PCLATH | - | - | - | Write Buffer for the upper 5 bits of the Program Counter | | | | | ---0 0000 | 26 |
| $18 \mathrm{Bh}{ }^{(3)}$ | INTCON | GIE | PEIE | TOIE | INTE | RBIE | TOIF | INTF | RBIF | 0000 000x | 20 |
| 18Ch | EECON1 | EEPGD | - | - | - | WRERR | WREN | WR | RD | x--- x000 | 41, 42 |
| 18Dh | EECON2 | EEPROM Control Register2 (not a physical register) | | | | | | | | -------- | 41 |
| 18Eh | - | Reserved maintain clear | | | | | | | | 00000000 | - |
| 18Fh | - | Reserved maintain clear | | | | | | | | 00000000 | - |
| Legend: $\quad \mathrm{x}=$ unknown, $\mathrm{u}=$ unchanged, $\mathrm{q}=$ value depends on condition, $-=$ unimplemented, read as ' 0 ', $\mathrm{r}=\mathrm{reser}$ Shaded locations are unimplemented, read as ' 0 '. | | | | | | | | | | | |
| Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC $<12: 8>$ who contents are transferred to the upper byte of the program counter.
 2: Bits PSPIE and PSPIF are reserved on PIC16F873/876 devices; always maintain these bits clear.
 3: These registers can be addressed from any bank.
 4: PORTD, PORTE, TRISD, and TRISE are not physically implemented on PIC16F873/876 devices; read as ' 0 '.
 5: PIR2<6> and PIE2<6> are reserved on these devices; always maintain these bits clear. | | | | | | | | | | | |

PIC16F87X

2.2.2.1 STATUS Register

The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.
The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the $\overline{T O}$ and $\overline{\mathrm{PD}}$ bits are not writable, therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000 u uluu (where $u=$ unchanged)
It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions not affecting any status bits, see the "Instruction Set Summary."

| Note: | The C and DC bits operate as a borrow
 and digit borrow bit, respectively, in sub-
 traction. See the SUBLW and SUBWF
 instructions for examples. |
| :--- | :--- | and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

| R/W-0 | R/W-0 | R/W-0 | R-1 | R-1 | $\mathrm{R} / \mathrm{W}-\mathrm{x}$ | | $\mathrm{R} / \mathrm{W}-\mathrm{x}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R} / \mathrm{W}-\mathrm{x}$ | | | | | | | |
| IRP | RP1 | RP0 | $\overline{\mathrm{TO}}$ | $\overline{\mathrm{PD}}$ | Z | DC | C |
| bit 7 | | | | | | | |

bit $7 \quad$ IRP: Register Bank Select bit (used for indirect addressing)
1 = Bank 2, 3 (100h-1FFh)
$0=$ Bank 0, 1 ($00 \mathrm{~h}-\mathrm{FFh}$)
bit 6-5 RP1:RP0: Register Bank Select bits (used for direct addressing)
11 = Bank 3 (180h - 1FFh)
$10=$ Bank 2 (100h-17Fh)
01 = Bank 1 (80h - FFh)
$00=$ Bank 0 ($00 \mathrm{~h}-7 \mathrm{Fh}$)
Each bank is 128 bytes
bit $4 \quad$ TO: Time-out bit
1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred
bit $3 \quad \overline{\mathbf{P D}}$: Power-down bit
1 = After power-up or by the CLRWDT instruction
$0=$ By execution of the SLEEP instruction
bit $2 \quad$ Z: Zero bit
$1=$ The result of an arithmetic or logic operation is zero
$0=$ The result of an arithmetic or logic operation is not zero
bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)
(for borrow, the polarity is reversed)
1 = A carry-out from the 4th low order bit of the result occurred
$0=$ No carry-out from the 4th low order bit of the result
bit $0 \quad$ C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)
1 = A carry-out from the Most Significant bit of the result occurred
$0=$ No carry-out from the Most Significant bit of the result occurred
Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high, or low order bit of the source register.

| Legend: | | |
| :--- | :--- | :--- |
| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as '0' |
| $-n=$ Value at POR | $' 1 '=$ Bit is set | $\prime 0 '=$ Bit is cleared $\quad x=$ Bit is unknown |

PIC16F87X

2.2.2.3 INTCON Register

The INTCON Register is a readable and writable regis-
ter, which contains various enable and flag bits for the
TMRO register overflow, RB Port change and External
RBO/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

| | R/W-0 | R/W-x | | | | | | |
|---|---|---|---|---|---|---|---|---|
| | GIE | PEIE | TOIE | INTE | RBIE | TOIF | INTF | RBIF |
| | bit 7 | | | | | | | bit 0 |
| bit 7 | GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts $0=$ Disables all interrupts | | | | | | | |
| bit 6 | PEIE: Peripheral Interrupt Enable bit
 1 = Enables all unmasked peripheral interrupts
 $0=$ Disables all peripheral interrupts | | | | | | | |
| bit 5 | TOIE: TMRO Overflow Interrupt Enable bit 1 = Enables the TMRO interrupt
 $0=$ Disables the TMRO interrupt | | | | | | | |
| bit 4 | INTE: RBO/INT External Interrupt Enable bit 1 = Enables the RBO/INT external interrupt
 $0=$ Disables the RBO/INT external interrupt | | | | | | | |
| bit 3 | RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt
 $0=$ Disables the RB port change interrupt | | | | | | | |
| bit 2 | TOIF: TMRO Overflow Interrupt Flag bit
 1 = TMRO register has overflowed (must be cleared in software)
 $0=$ TMRO register did not overflow | | | | | | | |
| bit 1 | INTF: RBO/INT External Interrupt Flag bit
 1 = The RBO/INT external interrupt occurred (must be cleared in software)
 $0=$ The RBO/INT external interrupt did not occur | | | | | | | |
| bit 0 | RBIF: RB Port Change Interrupt Flag bit
 1 = At least one of the RB7:RB4 pins changed state; a mismatch condition will continue to set the bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared (must be cleared in software).
 $0=$ None of the RB7:RB4 pins have changed state | | | | | | | |
| | Legend: $R=$ Read $-n=$ Valu | bit | $\begin{aligned} & \text { W }=\text { Writable bit } \\ & \text { ' } 1 \text { ' }=\text { Bit is set } \end{aligned}$ | | $\mathrm{U}=$ Unimplemented bit, read as ' 0 '
 ' 0 ' = Bit is cleared $\quad x=$ Bit is unknown | | | |

PIC16F87X

2.3 PCL and PCLATH

The program counter (PC) is 13 -bits wide. The low byte comes from the PCL register, which is a readable and writable register. The upper bits ($\mathrm{PC}<12: 8>$) are not readable, but are indirectly writable through the PCLATH register. On any RESET, the upper bits of the PC will be cleared. Figure $2-5$ shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH $<4: 0>\rightarrow \mathrm{PCH}$). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note, "Implementing a Table Read" (AN556).

2.3.2 STACK

The PIC16F87X family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed, or an interrupt causes a branch. The stack is POPed in the event of a RETURN,RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1: There are no status bits to indicate stack overflow or stack underflow conditions.
2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

2.4 Program Memory Paging

All PIC16F87X devices are capable of addressing a continuous 8 K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2 K program memory page. When doing a CALL or GOTO instruction, the upper 2 bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13 -bit PC is popped off the stack. Therefore, manipulation of the PCLATH $<4: 3>$ bits is not required for the return instructions (which POPs the address from the stack).
Note: The contents of the PCLATH register are unchanged after a RETURN or RETFIE instruction is executed. The user must rewrite the contents of the PCLATH register for any subsequent subroutine calls or GOTO instructions.
Example 2-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the Interrupt Service Routine (if interrupts are used).

EXAMPLE 2-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

| SUB1_P1 | ORg 0x500 | |
| :---: | :---: | :---: |
| | bCF PCLATH, 4 | |
| | bSF PCLATH, 3 | ;Select page 1
 ; (800h-FFFh) |
| | CALL SUB1_P1 | ; Call subroutine in |
| | : - | ; page 1 ($800 \mathrm{~h}-\mathrm{FFFh}$) |
| | ORG 0x | |
| | ORG 0x900 | ;page 1 (800h-FFFh) |
| | | |
| | : | ; called subroutine ; page 1 ($800 \mathrm{~h}-\mathrm{FFFh}$) |
| | : | |
| | RETURN | ; return to |
| | | ; Call subroutine |
| | | ; in page 0 |
| | | ; (000h-7FFh) |

PIC16F87X

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.
Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself, indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8 -bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-6.

A simple program to clear RAM locations $20 \mathrm{~h}-2 \mathrm{Fh}$ using indirect addressing is shown in Example 2-2.

| EXAMPLE | E 2-2: | INDIRECT ADDRESSING | |
| :---: | :---: | :---: | :---: |
| NEXT | MOVLW | 0x20 | ;initialize pointer |
| | MOVWF | FSR | ; to RAM |
| | CLRF | IndF | ; clear INDF register |
| | IncF | FSR, F | ;inc pointer |
| | BTFSS | FSR, 4 | ;all done? |
| | яото | NEXT | ; no clear next |
| continue | | | |
| | | | ; yes continue |

FIGURE 2-6: DIRECT/INDIRECT ADDRESSING

Note 1: For register file map detail, see Figure 2-3.

3.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.
Additional information on I/O ports may be found in the PICmicro ${ }^{\text {TM }}$ Mid-Range Reference Manual, (DS33023).

3.1 PORTA and the TRISA Register

PORTA is a 6 -bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit $(=1)$ will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit ($=0$) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, the value is modified and then written to the port data latch.
Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/TOCKI pin. The RA4/TOCKI pin is a Schmitt Trigger input and an open drain output. All other PORTA pins have TTL input levels and full CMOS output drivers.
Other PORTA pins are multiplexed with analog inputs and analog Vref input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

| Note: | On a Power-on Reset, these pins are con-
 figured as analog inputs and read as ' 0 '. |
| :--- | :--- |

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 3-1: INITIALIZING PORTA

| BCF | STATUS, RPO | ; |
| :---: | :---: | :---: |
| BCF | STATUS, RP1 | Bank0 |
| CLRF | PORTA | ; Initialize PORTA by
 ; clearing output
 ; data latches |
| BSF | STATUS, RPO | ; Select Bank 1 |
| MOVLW | 0×06 | Configure all pins |
| MOVWF | ADCON1 | ; as digital inputs |
| MOVLW | 0 xCF | ; Value used to
 ; initialize data
 ; direction |
| MOVWF | TRISA | ; Set RA<3:0> as inputs
 ; RA<5:4> as outputs
 ; TRISA<7:6>are always
 ; read as '0'. |

FIGURE 3-1: BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

Note 1: $/ / O$ pins have protection diodes to VDD and VSs.

FIGURE 3-2: BLOCK DIAGRAM OF

 RA4/TOCKI PIN

PIC16F87X

TABLE 3-1: PORTA FUNCTIONS

| Name | Bit\# | Buffer | |
| :--- | :---: | :---: | :--- |
| RA0/AN0 | bit0 | TTL | Input/output or analog input. |
| RA1/AN1 | bit1 | TTL | Input/output or analog input. |
| RA2/AN2 | bit2 | TTL | Input/output or analog input. |
| RA3/AN3/VREF | bit3 | TTL | Input/output or analog input or VREF. |
| RA4/T0CKI | bit4 | ST | Input/output or external clock input for Timer0. Output is open drain type. |
| RA5/ $\overline{\text { SS } / A N 4 ~}$ | bit5 | TTL | Input/output or slave select input for synchronous serial port or analog input. |

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

| Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on:
 POR,
 BOR | Value on all
 other
 RESETS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 05h | PORTA | - | - | RA5 | RA4 | RA3 | RA2 | RA1 | RA0 | $--0 x$ 0000 | $--0 u$ 0000 |
| 85h | TRISA | - | - | PORTA Data Direction Register | | | --111111 | --111111 | | | |
| 9Fh | ADCON1 | ADFM | - | - | - | PCFG3 | PCFG2 | PCFG1 | PCFG0 | $--0-0000$ | $--0-0000$ |

Legend: $\mathrm{x}=$ unknown, $\mathrm{u}=$ unchanged, $-=$ unimplemented locations read as ' 0 '
Shaded cells are not used by PORTA.

Note: When using the SSP module in SPI Slave mode and $\overline{\text { SS }}$ enabled, the A/D converter must be set to one of the following modes, where PCFG3:PCFG0 = 0100,0101, 011x, 1101, 1110, 1111.

PIC16F87X

3.2 PORTB and the TRISB Register

PORTB is an 8 -bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (=1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit $(=0)$ will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).
Three pins of PORTB are multiplexed with the Low Voltage Programming function: RB3/PGM, RB6/PGC and RB7/PGD. The alternate functions of these pins are described in the Special Features Section.
Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overline{\mathrm{RBPU}}$ (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

FIGURE 3-3: BLOCK DIAGRAM OF RB3:RB0 PINS

Four of the PORTB pins, RB7:RB4, have an interrupt-on-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt-on-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:
a) Any read or write of PORTB. This will end the mismatch condition.
b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.
The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

This interrupt-on-mismatch feature, together with software configureable pull-ups on these four pins, allow easy interface to a keypad and make it possible for wake-up on key depression. Refer to the Embedded Control Handbook, "Implementing Wake-up on Key Strokes" (AN552).

RBO/INT is an external interrupt input pin and is configured using the INTEDG bit (OPTION_REG<6>). RBO/INT is discussed in detail in Section 12.10.1.
$\begin{array}{ll}\text { FIGURE 3-4: } & \text { BLOCK DIAGRAM OF } \\ & \text { RB7:RB4 PINS }\end{array}$

In Serial Programming Mode
Note 1: I/O pins have diode protection to VDD and Vss.
2: To enable weak pull-ups, set the appropriate TRIS
bit(s) and clear the RBPU bit (OPTION REG bit(s) and clear the RBPU bit (OPTION_REG<7>).

PIC16F87X

TABLE 3-3: PORTB FUNCTIONS

| Name | Bit\# | Buffer | Function |
| :--- | :---: | :---: | :--- |
| RB0/INT | bit0 | TTL/ST ${ }^{(1)}$ | Input/output pin or external interrupt input. Internal software
 programmable weak pull-up. |
| RB1 | bit1 | TTL | Input/output pin. Internal software programmable weak pull-up. |
| RB2 | bit2 | TTL | Input/output pin. Internal software programmable weak pull-up. |
| RB3/PGM ${ }^{(3)}$ | bit3 | TTL | Input/output pin or programming pin in LVP mode. Internal software
 programmable weak pull-up. |
| RB4 | bit4 | TTL | Input/output pin (with interrupt-on-change). Internal software programmable
 weak pull-up. |
| RB5 | bit5 | TTL | Input/output pin (with interrupt-on-change). Internal software programmable
 weak pull-up. |
| RB6/PGC | bit6 | TTL/ST ${ }^{(2)}$ | Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin.
 Internal software programmable weak pull-up. Serial programming clock. |
| RB7/PGD | bit7 | TTL/ST $^{(2)}$ | Input/output pin (with interrupt-on-change) or In-Circuit Debugger pin.
 Internal software programmable weak pull-up. Serial programming data. |

Legend: TTL = TTL input, ST = Schmitt Trigger input
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: Low Voltage ICSP Programming (LVP) is enabled by default, which disables the RB3 I/O function. LVP must be disabled to enable RB3 as an I/O pin and allow maximum compatibility to the other 28-pin and 40-pin mid-range devices.

TABLE 3-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

| Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on: POR, BOR | Value on all other RESETS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 06h, 106h | PORTB | RB7 | RB6 | RB5 | RB4 | RB3 | RB2 | RB1 | RB0 | xxxx xxxx | uuuu uuuu |
| 86h, 186h | TRISB | PORTB Data Direction Register | | | | | | | | 11111111 | 11111111 |
| 81h, 181h | OPTION_REG | RBPU | INTEDG | TOCS | TOSE | PSA | PS2 | PS1 | PS0 | 11111111 | 11111111 |

Legend: $x=$ unknown, $u=$ unchanged. Shaded cells are not used by PORTB.

PIC16F87X

3.3 PORTC and the TRISC Register

PORTC is an 8 -bit wide, bi-directional port. The corresponding data direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISC bit $(=0)$ will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

PORTC is multiplexed with several peripheral functions (Table 3-5). PORTC pins have Schmitt Trigger input buffers.

When the $\mathrm{I}^{2} \mathrm{C}$ module is enabled, the PORTC $<4: 3>$ pins can be configured with normal $I^{2} \mathrm{C}$ levels, or with SMBus levels by using the CKE bit (SSPSTAT<6>).
When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modifywrite instructions (BSF, BCF, XORWF) with TRISC as destination, should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

FIGURE 3-5: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE) RC<2:0>, RC<7:5>

Note 1: $1 / O$ pins have diode protection to VDD and Vss.
2: Port/Peripheral select signal selects between port data and peripheral output.
3: Peripheral OE (output enable) is only activated if peripheral select is active.

FIGURE 3-6: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE) RC<4:3>

Note 1: I/O pins have diode protection to VDD and Vss. 2: Port/Peripheral select signal selects between port data and peripheral output.
3: Peripheral OE (output enable) is only activated if peripheral select is active.

PIC16F87X

TABLE 3-5: PORTC FUNCTIONS

| Name | Bit\# | Buffer Type | Function |
| :--- | :---: | :---: | :--- |
| RC0/T1OSO/T1CKI | bit0 | ST | Input/output port pin or Timer1 oscillator output/Timer1 clock input. |
| RC1/T1OSI/CCP2 | bit1 | ST | Input/output port pin or Timer1 oscillator input or Capture2 input//
 Compare2 output/PWM2 output. |
| RC2/CCP1 | bit2 | ST | Input/output port pin or Capture1 input/Compare1 output//
 PWM1 output. |
| RC3/SCK/SCL | bit3 | ST | RC3 can also be the synchronous serial clock for both SPI
 and I ${ }^{2}$ C modes. |
| RC4/SDI/SDA | bit4 | ST | RC4 can also be the SPI Data In (SPI mode) or data I/O (I ${ }^{2}$ C mode). |
| RC5/SDO | bit5 | ST | Input/output port pin or Synchronous Serial Port data output. |
| RC6/TX/CK | bit6 | ST | Input/output port pin or USART Asynchronous Transmit or
 Synchronous Clock. |
| RC7/RX/DT | bit7 | ST | Input/output port pin or USART Asynchronous Receive or
 Synchronous Data. |

Legend: ST = Schmitt Trigger input

TABLE 3-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

| Address | Name | Bit 7 | Bit $\mathbf{6}$ | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on:
 POR,
 BOR | Value on all
 other
 RESETS |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 07h | PORTC | RC7 | RC6 | RC5 | RC4 | RC3 | RC2 | RC1 | RC0 | xxxx xxxx | uuuu uuuu |
| 87h | TRISC | PORTC Data Direction Register | | | | | | | | | |
| Legend: $x=$ unknown, $u=$ unchanged | | | | | | | | | | | |

Legend: $x=$ unknown, $u=$ unchanged

PIC16F87X

3.4 PORTD and TRISD Registers

PORTD and TRISD are not implemented on the PIC16F873 or PIC16F876.
PORTD is an 8 -bit port with Schmitt Trigger input buffers. Each pin is individually configureable as an input or output.
PORTD can be configured as an 8 -bit wide microprocessor port (parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

FIGURE 3-7: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)

TABLE 3-7: PORTD FUNCTIONS

| Name | Bit\# | Buffer Type | Function |
| :--- | :--- | :---: | :--- |
| RD0/PSP0 | bit0 | ST/TTL ${ }^{(1)}$ | Input/output port pin or parallel slave port bit0. |
| RD1/PSP1 | bit1 | ST/TTL ${ }^{(1)}$ | Input/output port pin or parallel slave port bit1. |
| RD2/PSP2 | bit2 | ST/TTL ${ }^{(1)}$ | Input/output port pin or parallel slave port bit2. |
| RD3/PSP3 | bit3 | ST/TTL ${ }^{(1)}$ | Input/output port pin or parallel slave port bit3. |
| RD4/PSP4 | bit4 | ST/TTL ${ }^{(1)}$ | Input/output port pin or parallel slave port bit4. |
| RD5/PSP5 | bit5 | ST/TTL ${ }^{(1)}$ | Input/output port pin or parallel slave port bit5. |
| RD6/PSP6 | bit6 | ST/TTL ${ }^{(1)}$ | Input/output port pin or parallel slave port bit6. |
| RD7/PSP7 | bit7 | ST/TTL ${ }^{(1)}$ | Input/output port pin or parallel slave port bit7. |

Legend: ST = Schmitt Trigger input, TTL = TTL input
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 3-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

| Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on:
 POR,
 BOR | Value on
 all other
 RESETS |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 08h | PORTD | RD7 | RD6 | RD5 | RD4 | RD3 | RD2 | RD1 | RD0 | $x \times x x \times x \times x$ | uuuu uuuu |
| 88h | TRISD | PORTD Data Direction Register | | | | | | | | | |
| 89h | TRISE | IBF | OBF | IBOV | PSPMODE | - | PORTE Data Direction Bits | $0000-111$ | $0000-111$ | | |

Legend: $x=$ unknown, u unchanged, $-=$ unimplemented, read as ' 0 '. Shaded cells are not used by PORTD.

PIC16F87X

3.5 PORTE and TRISE Register

PORTE and TRISE are not implemented on the PIC16F873 or PIC16F876.
PORTE has three pins (REO//रD/AN5, RE1/ $\overline{W R} /$ AN6, and RE2/CS/AN7) which are individually configureable as inputs or outputs. These pins have Schmitt Trigger input buffers.

The PORTE pins become the I/O control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make certain that the TRISE<2:0> bits are set, and that the pins are configured as digital inputs. Also ensure that ADCON1 is configured for digital I/O. In this mode, the input buffers are TTL.
Register 3-1 shows the TRISE register, which also controls the parallel slave port operation.

PORTE pins are multiplexed with analog inputs. When selected for analog input, these pins will read as '0's. TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.
Note: On a Power-on Reset, these pins are configured as analog inputs, and read as ' 0 '.

Note 1: I/O pins have protection diodes to VDD and Vss.

TABLE 3-9: PORTE FUNCTIONS

| Name | Bit\# | Buffer Type | Function |
| :---: | :---: | :---: | :---: |
| RE0/RD/AN5 | bit0 | ST/TTL ${ }^{(1)}$ | $\frac{1 / O}{R D}$
 1 = Idle
 $0=$ Read operation. Contents of PORTD register are output to PORTD
 I/O pins (if chip selected) |
| RE1/WR/AN6 | bit1 | ST/TTL ${ }^{(1)}$ | I/O port pin or write control input in Parallel Slave Port mode or analog input: $\overline{W R}$
 $1=$ Idle
 $0=$ Write operation. Value of PORTD I/O pins is latched into PORTD register (if chip selected) |
| RE2/[CS/AN7 | bit2 | ST/TTL ${ }^{(1)}$ | I/O port pin or chip select control input in Parallel Slave Port mode or analog input: $\overline{\mathrm{CS}}$
 $1=$ Device is not selected
 $0=$ Device is selected |

Legend: ST = Schmitt Trigger input, TTL = TTL input
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.
TABLE 3-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

| Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on:
 POR, BOR | Value on
 all other
 RESETS |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 09h | PORTE | - | - | - | - | - | RE2 | RE1 | RE0 | $-----x x x$ | ----- -uuu |
| 89h | TRISE | IBF | OBF | IBOV | PSPMODE | - | PORTE Data Direction Bits | $0000-111$ | $0000-111$ | | |
| 9Fh | ADCON1 | ADFM | - | - | - | PCFG3 | PCFG2 | PCFG1 | PCFG0 | $--0-0000$ | $--0-0000$ |

Legend: $x=$ unknown, u $=$ unchanged, $-=$ unimplemented, read as '0'. Shaded cells are not used by PORTE.

4.0 DATA EEPROM AND FLASH PROGRAM MEMORY

The Data EEPROM and FLASH Program Memory are readable and writable during normal operation over the entire VDD range. These operations take place on a single byte for Data EEPROM memory and a single word for Program memory. A write operation causes an erase-then-write operation to take place on the specified byte or word. A bulk erase operation may not be issued from user code (which includes removing code protection).
Access to program memory allows for checksum calculation. The values written to program memory do not need to be valid instructions. Therefore, up to 14-bit numbers can be stored in memory for use as calibration parameters, serial numbers, packed 7-bit ASCII, etc. Executing a program memory location containing data that form an invalid instruction, results in the execution of a NOP instruction.
The EEPROM Data memory is rated for high erase/ write cycles (specification D120). The FLASH program memory is rated much lower (specification D130), because EEPROM data memory can be used to store frequently updated values. An on-chip timer controls the write time and it will vary with voltage and temperature, as well as from chip to chip. Please refer to the specifications for exact limits (specifications D122 and D133).
A byte or word write automatically erases the location and writes the new value (erase before write). Writing to EEPROM data memory does not impact the operation of the device. Writing to program memory will cease the execution of instructions until the write is complete. The program memory cannot be accessed during the write. During the write operation, the oscillator continues to run, the peripherals continue to function and interrupt events will be detected and essentially "queued" until the write is complete. When the write completes, the next instruction in the pipeline is executed and the branch to the interrupt vector will take place, if the interrupt is enabled and occurred during the write.
Read and write access to both memories take place indirectly through a set of Special Function Registers (SFR). The six SFRs used are:

- EEDATA
- EEDATH
- EEADR
- EEADRH
- EECON1
- EECON2

PIC16F87X

Write operations have two control bits, WR and WREN and two status bits, WRERR and EEIF. The WREN bit is used to enable or disable the write operation. When WREN is clear, the write operation will be disabled. Therefore, the WREN bit must be set before executing a write operation. The WR bit is used to initiate the write operation. It also is automatically cleared at the end of the write operation. The interrupt flag EEIF is used to determine when the memory write completes. This flag must be cleared in software before setting the WR bit. For EEPROM data memory, once the WREN bit and the WR bit have been set, the desired memory address in EEADR will be erased, followed by a write of the data in EEDATA. This operation takes place in parallel with the microcontroller continuing to execute normally. When the write is complete, the EEIF flag bit will be set. For program memory, once the WREN bit and the WR bit have been set, the microcontroller will cease to exe-
cute instructions. The desired memory location pointed to by EEADRH:EEADR will be erased. Then, the data value in EEDATH:EEDATA will be programmed. When complete, the EEIF flag bit will be set and the microcontroller will continue to execute code.
The WRERR bit is used to indicate when the PIC16F87X device has been reset during a write operation. WRERR should be cleared after Power-on Reset. Thereafter, it should be checked on any other RESET. The WRERR bit is set when a write operation is interrupted by a $\overline{\text { MCLR }}$ Reset, or a WDT Time-out Reset, during normal operation. In these situations, following a RESET, the user should check the WRERR bit and rewrite the memory location, if set. The contents of the data registers, address registers and EEPGD bit are not affected by either MCLR Reset, or WDT Timeout Reset, during normal operation

REGISTER 4-1: EECON1 REGISTER (ADDRESS 18Ch)

| | R/W-x | U-0 | U-0 | U-0 | R/W-x | R/W-0 | R/S-0 | R/S-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | EEPGD | - | - | - | WRERR | WREN | WR | RD |
| | bit 7 | | | | | | | bit 0 |
| bit 7 | EEPGD: Program/Data EEPROM Select bit
 1 = Accesses program memory
 $0=$ Accesses data memory
 (This bit cannot be changed while a read or write operation is in progress) | | | | | | | |
| bit 6-4 bit 3 | Unimplemented: Read as ' 0 '
 WRERR: EEPROM Error Flag bit
 $1=$ A write operation is prematurely terminated
 (any $\overline{\text { MCLR }}$ Reset or any WDT Reset during normal operation)
 $0=$ The write operation completed | | | | | | | |
| bit 2 | WREN: EEPROM Write Enable bit
 1 = Allows write cycles
 $0=$ Inhibits write to the EEPROM | | | | | | | |
| bit 1 | WR: Write Control bit
 $1=$ Initiates a write cycle. (The bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.)
 $0=$ Write cycle to the EEPROM is complete | | | | | | | |
| bit 0 | RD: Read Control bit
 1 = Initiates an EEPROM read. (RD is cleared in hardware. The RD bit can only be set (not cleared) in software.)
 $0=$ Does not initiate an EEPROM read | | | | | | | |
| | Legend:
 $\mathrm{R}=$ Reada
 $-\mathrm{n}=$ Value | bit | | set | $U=$ Unimp ' 0 ' $=$ Bit is | mented b | read as $=$ Bit is | |

PIC16F87X

4.2 Reading the EEPROM Data Memory

Reading EEPROM data memory only requires that the desired address to access be written to the EEADR register and clear the EEPGD bit. After the RD bit is set, data will be available in the EEDATA register on the very next instruction cycle. EEDATA will hold this value until another read operation is initiated or until it is written by firmware.
The steps to reading the EEPROM data memory are:

1. Write the address to EEDATA. Make sure that the address is not larger than the memory size of the PIC16F87X device.
2. Clear the EEPGD bit to point to EEPROM data memory.
3. Set the RD bit to start the read operation.
4. Read the data from the EEDATA register.

EXAMPLE 4-1: EEPROM DATA READ

| BSF | STATUS, RP1 | ; |
| :--- | :--- | :--- |
| BCF | STATUS, RPO | ;Bank 2 |
| MOVF | ADDR, W | ;Write address |
| MOVWF | EEADR | ; to read from |
| BSF | STATUS, RPO | ;Bank 3 |
| BCF | EECON1, EEPGD | ; Point to Data memory |
| BSF | EECON1, RD | ;Start read operation |
| BCF | STATUS, RPO | ;Bank 2 |
| MOVF | EEDATA, W | ; W = EEDATA |

4.3 Writing to the EEPROM Data Memory

There are many steps in writing to the EEPROM data memory. Both address and data values must be written to the SFRs. The EEPGD bit must be cleared, and the WREN bit must be set, to enable writes. The WREN bit should be kept clear at all times, except when writing to the EEPROM data. The WR bit can only be set if the WREN bit was set in a previous operation, i.e., they both cannot be set in the same operation. The WREN bit should then be cleared by firmware after the write. Clearing the WREN bit before the write actually completes will not terminate the write in progress.
Writes to EEPROM data memory must also be prefaced with a special sequence of instructions, that prevent inadvertent write operations. This is a sequence of five instructions that must be executed without interruptions. The firmware should verify that a write is not in progress, before starting another cycle.

The steps to write to EEPROM data memory are:

1. If step 10 is not implemented, check the WR bit to see if a write is in progress.
2. Write the address to EEADR. Make sure that the address is not larger than the memory size of the PIC16F87X device.
3. Write the 8-bit data value to be programmed in the EEDATA register.
4. Clear the EEPGD bit to point to EEPROM data memory.
5. Set the WREN bit to enable program operations.
6. Disable interrupts (if enabled).
7. Execute the special five instruction sequence:

- Write 55h to EECON2 in two steps (first to W, then to EECON2)
- Write AAh to EECON2 in two steps (first to W, then to EECON2)
- Set the WR bit

8. Enable interrupts (if using interrupts).
9. Clear the WREN bit to disable program operations.
10. At the completion of the write cycle, the WR bit is cleared and the EEIF interrupt flag bit is set. (EEIF must be cleared by firmware.) If step 1 is not implemented, then firmware should check for EEIF to be set, or WR to clear, to indicate the end of the program cycle.

| EXAMP | E 4-2: EE | EEPROM DATA WRITE |
| :---: | :---: | :---: |
| BSF | STATUS, RP1 | ; |
| BSF | STATUS, RPO | ; Bank 3 |
| BTFSC | EECON1, WR | ;Wait for |
| GOTO | \$-1 | ;write to finish |
| BCF | STATUS, RPO | ; Bank 2 |
| MOVF | ADDR, W | ;Address to |
| MOVWF | EEADR | ; write to |
| MOVF | VALUE, W | ; Data to |
| MOVWF | EEDATA | ; write |
| BSF | STATUS, RPO | ; Bank 3 |
| BCF | EECON1, EEPGD | ;Point to Data memory |
| BSF | EECON1, WREN | ;Enable writes
 ;Only disable interrupts |
| BCF | INTCON, GIE | ;if already enabled, ;otherwise discard |
| MOVLW | 0x55 | ;Write 55h to |
| MOVWF | EECON2 | ; EECON2 |
| MOVLW | 0xAA | ;Write AAh to |
| MOVWF | EECON2 | ; EECON2 |
| BSF | EECON1, WR | ; Start write operation
 ;Only enable interrupts |
| BSF | INTCON, GIE | ;if using interrupts, ; otherwise discard |
| BCF | EECON1, WREN | ;Disable writes |

PIC16F87X

11.0 ANALOG-TO-DIGITAL

 CONVERTER (A/D) MODULEThe Analog-to-Digital (A/D) Converter module has five inputs for the 28-pin devices and eight for the other devices.

The analog input charges a sample and hold capacitor. The output of the sample and hold capacitor is the input into the converter. The converter then generates a digital result of this analog level via successive approximation. The A/D conversion of the analog input signal results in a corresponding 10-bit digital number. The A/D module has high and low voltage reference input that is software selectable to some combination of VDD, Vss, RA2, or RA3.
The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D clock must be derived from the A / D 's internal RC oscillator.

The A/D module has four registers. These registers are:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register0 (ADCONO)
- A/D Control Register1 (ADCON1)

The ADCONO register, shown in Register 11-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 11-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be the voltage reference), or as digital I/O.
Additional information on using the A/D module can be found in the PICmicro ${ }^{\text {TM }}$ Mid-Range MCU Family Reference Manual (DS33023).

REGISTER 11-1: ADCONO REGISTER (ADDRESS: 1Fh)

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADCS1 | ADCSO | CHS2 | CHS1 | CHSO | GO/DONE | - | ADON |
| bit 7 | | | | | bit 0 | | |

bit 7-6
ADCS1:ADCS0: A/D Conversion Clock Select bits
$00=$ Fosc $/ 2$
$01=$ FOSC/8
$10=$ Fosc $/ 32$
11 = FRC (clock derived from the internal A/D module RC oscillator)
bit 5-3 CHS2:CHS0: Analog Channel Select bits
$000=$ channel 0 , (RAO/ANO)
001 = channel 1, (RA1/AN1)
$010=$ channel 2, (RA2/AN2)
011 = channel 3, (RA3/AN3)
$100=$ channel 4, (RA5/AN4)
$101=$ channel $5,(\text { REO/AN5 })^{(1)}$
$110=$ channel $6,(\text { RE1/AN6 })^{(1)}$
111 = channel 7, (RE2/AN7) ${ }^{(1)}$
bit 2 GO/DONE: A/D Conversion Status bit If $A D O N=1$:
$1=A / D$ conversion in progress (setting this bit starts the A/D conversion)
$0=A / D$ conversion not in progress (this bit is automatically cleared by hardware when the A / D conversion is complete)
bit $1 \quad$ Unimplemented: Read as ' 0 '
bit $0 \quad$ ADON: A/D On bit
$1=A / D$ converter module is operating
$0=A / D$ converter module is shut-off and consumes no operating current

Note 1: These channels are not available on PIC16F873/876 devices.

| Legend: | | |
| :--- | :--- | :--- |
| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| $-n=$ Value at POR | $' 1$ ' = Bit is set | ' 0 ' = Bit is cleared $\quad x=$ Bit is unknown |

PIC16F87X

REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)

| U-0 | U-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADFM | - | - | - | PCFG3 | PCFG2 | PCFG1 | PCFG0 |
| bit 7 | | | | | | | |

bit 7
ADFM: A/D Result Format Select bit
1 = Right justified. 6 Most Significant bits of ADRESH are read as ' 0 '.
$0=$ Left justified. 6 Least Significant bits of ADRESL are read as ' 0 '.
bit 6-4 Unimplemented: Read as ' 0 '
bit 3-0 PCFG3:PCFGO: A/D Port Configuration Control bits:

| PCFG3: PCFG0 | $\begin{array}{\|l\|l\|} \hline \text { AN7 } \\ \hline \text { (1) } \end{array}$ | $\begin{array}{\|c\|} \hline \text { AN6 }{ }^{(1)} \\ \text { RE1 } \end{array}$ | $\begin{array}{\|l\|l\|} \hline \text { AN5 } \\ \text { REO } \end{array}$ | $\begin{aligned} & \text { AN4 } \\ & \text { RA5 } \end{aligned}$ | $\begin{aligned} & \text { AN3 } \\ & \text { RA3 } \end{aligned}$ | $\begin{aligned} & \text { AN2 } \\ & \text { RA2 } \end{aligned}$ | $\begin{aligned} & \text { AN1 } \\ & \text { RA1 } \end{aligned}$ | $\begin{aligned} & \text { ANO } \\ & \text { RAO } \end{aligned}$ | Vref+ | Vref- | CHAN/ Refs ${ }^{(2)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0000 | A | A | A | A | A | A | A | A | VDD | Vss | 8/0 |
| 0001 | A | A | A | A | Vref+ | A | A | A | RA3 | Vss | 7/1 |
| 0010 | D | D | D | A | A | A | A | A | VDD | Vss | 5/0 |
| 0011 | D | D | D | A | Vref+ | A | A | A | RA3 | Vss | 4/1 |
| 0100 | D | D | D | D | A | D | A | A | VDD | Vss | 3/0 |
| 0101 | D | D | D | D | Vref+ | D | A | A | RA3 | Vss | 2/1 |
| 011x | D | D | D | D | D | D | D | D | VDD | Vss | 0/0 |
| 1000 | A | A | A | A | Vref+ | Vref- | A | A | RA3 | RA2 | 6/2 |
| 1001 | D | D | A | A | A | A | A | A | VDD | Vss | 6/0 |
| 1010 | D | D | A | A | Vref+ | A | A | A | RA3 | Vss | 5/1 |
| 1011 | D | D | A | A | VREF+ | Vref- | A | A | RA3 | RA2 | 4/2 |
| 1100 | D | D | D | A | Vref+ | VREF- | A | A | RA3 | RA2 | 3/2 |
| 1101 | D | D | D | D | Vref+ | VREF- | A | A | RA3 | RA2 | 2/2 |
| 1110 | D | D | D | D | D | D | D | A | VDD | Vss | 1/0 |
| 1111 | D | D | D | D | Vref+ | Vref- | D | A | RA3 | RA2 | 1/2 |

$A=$ Analog input $\quad D=$ Digital I/O

Note 1: These channels are not available on PIC16F873/876 devices.
2: This column indicates the number of analog channels available as A / D inputs and the number of analog channels used as voltage reference inputs.

| Legend: | | |
| :--- | :--- | :--- |
| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| $-n=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown |

The ADRESH:ADRESL registers contain the 10-bit result of the A/D conversion. When the A/D conversion is complete, the result is loaded into this A/D result register pair, the GO/DONE bit (ADCONO<2>) is cleared and the A/D interrupt flag bit ADIF is set. The block diagram of the A / D module is shown in Figure 11-1.
After the A / D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs.

To determine sample time, see Section 11.1. After this acquisition time has elapsed, the A/D conversion can be started.

PIC16F87X

10.0 ADDRESSABLE UNIVERSAL

 SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI.) The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A / D or D/A integrated circuits, serial EEPROMs etc.

The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous - Master (half duplex)
- Synchronous - Slave (half duplex)

Bit SPEN (RCSTA $<7>$) and bits TRISC $<7: 6>$ have to be set in order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.
The USART module also has a multi-processor communication capability using 9 -bit address detection.

REGISTER 10-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R-1 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CSRC | TX9 | TXEN | SYNC | - | BRGH | TRMT | TX9D |
| bit 7 | | | | | | | |

bit $7 \quad$ CSRC: Clock Source Select bit
Asynchronous mode:
Don't care
Synchronous mode
1 = Master mode (clock generated internally from BRG)
0 = Slave mode (clock from external source)
bit $6 \quad$ TX9: 9-bit Transmit Enable bit
1 = Selects 9-bit transmission
$0=$ Selects 8 -bit transmission
bit 5 TXEN: Transmit Enable bit
1 = Transmit enabled
$0=$ Transmit disabled
Note: SREN/CREN overrides TXEN in SYNC mode.
bit 4 SYNC: USART Mode Select bit
1 = Synchronous mode
$0=$ Asynchronous mode
bit 3 Unimplemented: Read as ' 0 '
bit 2 BRGH: High Baud Rate Select bit
Asynchronous mode:
1 = High speed
0 = Low speed
Synchronous mode:
Unused in this mode
bit 1 TRMT: Transmit Shift Register Status bit
1 = TSR empty
0 = TSR full
bit $0 \quad$ TX9D: 9th bit of Transmit Data, can be parity bit

| Legend: | | |
| :--- | :--- | :--- |
| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| $-n=$ Value at POR | $' 1$ ' = Bit is set | ' 0 ' = Bit is cleared $\quad x=$ Bit is unknown |

PIC16F87X

REGISTER 10-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

| R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R-0 | R-0 | R-x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SPEN | RX9 | SREN | CREN | ADDEN | FERR | OERR | RX9D |
| bit 7 | | | | bit 0 | | | |

bit $7 \quad$ SPEN: Serial Port Enable bit
1 = Serial port enabled (configures RC7/RX/DT and RC6/TX/CK pins as serial port pins) $0=$ Serial port disabled
bit $6 \quad$ RX9: 9-bit Receive Enable bit
1 = Selects 9 -bit reception
$0=$ Selects 8 -bit reception
SREN: Single Receive Enable bit
Asynchronous mode:
Don't care
Synchronous mode - master:
1 = Enables single receive
$0=$ Disables single receive
This bit is cleared after reception is complete.
Synchronous mode - slave:
Don't care
bit 4 CREN: Continuous Receive Enable bit
Asynchronous mode:
1 = Enables continuous receive
$0=$ Disables continuous receive
Synchronous mode:
1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)
$0=$ Disables continuous receive
bit 3 ADDEN: Address Detect Enable bit
Asynchronous mode 9-bit (RX9 = 1):
1 = Enables address detection, enables interrupt and load of the receive buffer when RSR<8> is set
$0=$ Disables address detection, all bytes are received, and ninth bit can be used as parity bit
bit 2 FERR: Framing Error bit
1 = Framing error (can be updated by reading RCREG register and receive next valid byte) $0=$ No framing error
bit 1 OERR: Overrun Error bit
1 = Overrun error (can be cleared by clearing bit CREN)
0 = No overrun error
bit $0 \quad$ RX9D: 9th bit of Received Data (can be parity bit, but must be calculated by user firmware)

| Legend: | | |
| :--- | :--- | :--- |
| $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
| $-n=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown |

[^0]: Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Please be aware that an important notice concerning availability, standard warranty, and use in critical app
 All trademarks are the property of their respective owners.

 | PRODUCTION DATA information is current as of publication date. | Copyright © 2000-2013, Texas Instruments Incorporated |
 | :--- | :--- |
 | Products conform to specifications per the terms of the Texas | | Instruments standard warranty. Production processing does no necessarily include testing of all parameters.

[^1]: These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

[^2]: ${ }^{(2)}$ Voltage tolerance is required at main connector and S-ATA connector (if used).

