Controlling of Fundamental UAVs

(Unmannned Aerial Vehicles)

Carrie Yan
Supervised by: Prof. Hugh H.T Liu

Flight Simulation and Control Lab
Engineering Science, Aerospace
Universities of Toronto

August 24 ${ }^{\text {th }}, 2015$

Outline

I. Introduction
II. Abbreviation
III. Modelling the Quad rotor: Equations of Motion

In body fixed frame
In earth inertial frame-Lagrangian Method
In earth inertial frame-Newtonian Method
IV. Stability Analysis

Stability Analysis
Linearization of Full Model
V. Controllers Design

Controller Schematics
Controllers Tuning
VI. Simulation Results

Longitudinal Manipulation
Lateral Manipulation
VII. Reality Application

I. Introduction

- Fundamental UAVs - X shape Quad rotors
- No control surfaces, all motions are controlled by 2 types of identical unidirectional rotors.
- Each rotor can provide a thrust and a torque.
- front motor M1 \& rear M3 rotate counterclockwise
- left motor M2 \& right M4 turn clockwise.
- Objective: model the quad rotors and control for tracking problems

Figure: 3.1 Quadrotor

II.Abbreviation

m	mass of quadrotor
g	gravity
$\mathrm{I}_{x}, I_{y}, I_{z}$	moment of inertia in each direction
$\vec{R}=C_{1}(\phi) C_{2}(\theta) C_{3}(\psi)$	Euler rotation matrix in 1-2-3 sequence ${ }^{1}$
W	angular velocities conversion matrix ${ }^{2}$

body frame		inertial frame	
$\mathrm{u}, \mathrm{v}, \mathrm{w}$	velocities	$\dot{x}, \dot{y}, \dot{z}$	velocities
$\vec{\Omega}=\mathrm{p}, \mathrm{q}, \mathrm{r}$	angular velocities	$\overrightarrow{\dot{\eta}}=\dot{\phi}, \dot{\theta}, \dot{\psi}$	angular velocities
T	main thrust	$\vec{\xi}=x, y, z$	positions
$\tau_{x}, \tau_{y}, \tau_{z}$	roll, pitch,yaw torques	$\vec{\eta}=\phi, \theta, \psi$	Euler angles

[^0]
III.Model in body fixed frame

$-\left[\begin{array}{c}-m g \sin (\theta) \\ m g \cos (\theta) \sin (\phi) \\ T+m g \cos (\theta) \cos (\phi)\end{array}\right]=\left[\begin{array}{c}m(\dot{u}+q w-r v) \\ m(\dot{v}+r u-p w) \\ m(\dot{w}+p v-q u)\end{array}\right]$
$-\left[\begin{array}{l}\tau_{x} \\ \tau_{y} \\ \tau_{z}\end{array}\right]=\left[\begin{array}{l}I_{x} \dot{p}-\left(I_{y}-I_{z}\right) q r \\ I_{y} \dot{q}-\left(I_{z}-I_{x}\right) p r \\ I_{z} \dot{r}-\left(I_{x}-I_{y}\right) p q\end{array}\right]$

- Conversion between body and inertial frame
$-\left[\begin{array}{c}\dot{x} \\ \dot{y} \\ \dot{z}\end{array}\right]=R^{-1}\left[\begin{array}{c}u \\ v \\ w\end{array}\right]$
$-\left[\begin{array}{c}\dot{\phi} \\ \dot{\theta} \\ \dot{\psi}\end{array}\right]=W^{-1}\left[\begin{array}{l}p \\ q \\ r\end{array}\right]$

III.Model in earth inertial frame

Lagrangian Method

Lagrangian: $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\left(\frac{\partial L}{\partial q}\right)=\vec{F}_{\text {nonconservative }}$
Generalized coordinates $\mathrm{q}: \vec{\xi}=(x, y, z)$ and $\vec{\eta}=(\phi, \theta, \psi)$

1. For translation motion (coordinates x, y, z)

- Kinematic Energy $T=\frac{1}{2} m \dot{\xi}^{T} \dot{\xi}$
- Potential Energy $U=m g z$
- Nonconservative force $\vec{F}=\vec{R}^{T} \overrightarrow{F_{b o d y}}=\vec{R}^{T}\left[\begin{array}{l}0 \\ 0 \\ T\end{array}\right]$

Result: $\left[\begin{array}{c}m \ddot{x} \\ m \ddot{y} \\ m \ddot{z}\end{array}\right]=\left[\begin{array}{c}T(\sin (\phi) \sin (\psi)+\cos (\phi) \cos (\psi) \sin (\theta)) \\ T(\cos (\phi) \sin (\theta) \sin (\psi)-\cos (\psi) \sin (\theta)) \\ T \cos (\theta) \cos (\phi)-m g\end{array}\right]$

III.Model in earth inertial frame

Lagrangian Method

2. For rotation motion (coordinates ϕ, θ, ψ)

- Kinematic Energy $T=\frac{1}{2} \vec{\Omega}^{\top} I \vec{\Omega}=\frac{1}{2} \vec{\eta}^{\top} J \overrightarrow{\dot{\eta}}$, where $J=W^{\top} I W$
- Potential Energy U=0
- Nonconservative torque $R^{T} \vec{\tau}_{\text {body }}$

Result:

$$
\left[\begin{array}{c}
\ddot{\phi} \\
\ddot{\theta} \\
\ddot{\psi}
\end{array}\right]=J^{-1}\left\{R^{T} \vec{\tau}_{\text {body }}-\left[\dot{W}^{T} I W+W^{T} I \dot{W}-\frac{1}{2} \frac{\partial}{\partial \vec{\eta}}\left(\overrightarrow{\dot{\eta}}^{T} J\right)\right] \vec{\eta}\right\}
$$

III.Model in earth inertial frame

Newtonian Method

From Newton Second Law, $\vec{F}=m \vec{a}$
Result: $\left[\begin{array}{c}m \ddot{\ddot{ }} \\ m \ddot{y} \\ m \ddot{z}\end{array}\right]=R^{T}\left[\begin{array}{l}0 \\ 0 \\ T\end{array}\right]+\vec{F}_{\text {body }}=R^{T}\left[\begin{array}{l}0 \\ 0 \\ T\end{array}\right]+\left[\begin{array}{c}0 \\ 0 \\ m g\end{array}\right]$
Also, $I \overrightarrow{\dot{\Omega}}=-\vec{\Omega} \times I \vec{\Omega}+\vec{\tau}$, where $\vec{\Omega}=W \vec{\eta}$
Result: $\left[\begin{array}{c}\ddot{\phi} \\ \ddot{\theta} \\ \ddot{\psi}\end{array}\right]=\vec{\eta}=I^{-1} W^{-1}\left(-I \dot{W} \vec{\eta}-W \overrightarrow{\dot{\eta}} \times I W \overrightarrow{\dot{\eta}}+\vec{\tau}_{\text {body }}\right)$

III.Modelling

Summary

- Input: main thrust T , torques $\tau_{x}, \tau_{y}, \tau_{z}$
- Output: positions x, y, z
- State Vector $\left[\begin{array}{c}x \\ y \\ z \\ \dot{x} \\ \dot{y} \\ \dot{z} \\ \phi \\ \theta \\ \psi \\ \dot{\phi} \\ \dot{\theta} \\ \dot{\psi}\end{array}\right]$

III.Modelling
 Open Loop Response Comparison

For model verification, Choose:
Simulation time $=10$ s
$\mathrm{T}=$ sine wave with bias $\mathrm{m}^{*} \mathrm{~g}$, frequency $1 \mathrm{rad} / \mathrm{s}$, amplitude 0.02 N
$\tau_{x}=$ sine with no bias, amplitude $0.0001 \mathrm{~N} / \mathrm{m}$, frequency $1 \mathrm{rad} / \mathrm{s}$
$\tau_{y}=$ sine with amplitude $0.0001 \mathrm{~N} / \mathrm{m}$ and frequency $2 \mathrm{rad} / \mathrm{s}$
$\tau_{z}=$ step at time 1 s with final value $0.0001 \mathrm{~N} / \mathrm{m}$

III.Modelling

Open Loop Response Comparison

Figure: 11.1 Open Loop Response Comparison Result

III.Model

Modelling in the body fixed frame and in the earth inertial frame with Newtonian method look similar.

Difference:

the order of state space vector updates and the conversion between body frame and inertial frame.

- Every time, state space vectors are updated to next time based on previous state information.
- body frame modeling does conversion after updates
- inertial frame modeling does conversions first

That is EVERYTHING about the model.

IV.Stability

Method of Analysis

- Necessity of Controllers
- Plant is Stable? If No, need stabilizing controllers to stabilize the model If Yes, need rate controllers to enhance the performance of plant?
- Impulse Response Analysis
- Stable: at infinite time, response reduced to 0
- Marginally Stable: at infinite time, response reduced to a finite number
- Unstable: response unbounded
- Poles Position Analysis via eigenvalue of state vector A
- Stable: all poles in left-hand plane
- Marginally Stable: some poles lie on imaginary axis, while no right-hand plane poles
- Unstable: there exists right-hand plane pole

IV.Stability

Linearization

- Equation of Motion used (Newtonian Method) It is of the non-linear form $\vec{x}=f(\vec{x})$
$-\left[\begin{array}{c}m \ddot{x} \\ m \ddot{y} \\ m \ddot{z}\end{array}\right]=\left[\begin{array}{c}T(\sin (\phi) \sin (\psi)+\cos (\phi) \cos (\psi) \sin (\theta)) \\ T(\cos (\phi) \sin (\theta) \sin (\psi)-\cos (\psi) \sin (\theta)) \\ T \cos (\theta) \cos (\phi)-m g\end{array}\right]$
- $\left[\begin{array}{c}\ddot{\ddot{\theta}} \\ \ddot{\theta} \\ \ddot{\psi}\end{array}\right]=\overrightarrow{\ddot{\eta}}=I^{-1} W^{-1}\left(-I \dot{W} \overrightarrow{\dot{\eta}}-W \overrightarrow{\dot{\eta}} \times I W \overrightarrow{\dot{\eta}}+\vec{\tau}_{\text {body }}\right)$
- Linearized around operating point via calculations of Jacobian
- Operating Point: Hovering Mode

$$
T=m * g, \tau_{x}=0, \tau_{y}=0, \tau_{z}=0
$$

State Space Vector $\left[\begin{array}{llllllllllll}x & y & z & \dot{x} & \dot{y} & \dot{z} & \phi & \theta & \psi & \dot{\phi} & \dot{\theta} & \dot{\psi}\end{array}\right]^{T}$
$=\left[\begin{array}{llllllllllll}0 & 0 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]^{T}$

IV.Stability

Linearized Model

$$
\begin{aligned}
& \underline{\dot{x}}=\underline{A x}+\underline{B} \underline{u} \\
& \frac{d}{d t}\left[\begin{array}{c}
x \\
y \\
z \\
\dot{x} \\
\dot{y} \\
\dot{z} \\
\phi \\
\theta \\
\psi \\
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]=\left[\begin{array}{llllllllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 9.81 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -9.81 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
\dot{x} \\
\dot{y} \\
\dot{z} \\
\phi \\
\theta \\
\psi \\
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]+\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1.2346 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 147.9290 & 0 & 0 \\
0 & 0 & 147.9290 & 0 \\
0 & 0 & 0 & 63.2911
\end{array}\right]
\end{aligned}
$$

IV.Stability

Linearized Model

$$
\begin{aligned}
& \underline{y}=\underline{C} \underline{x}+\underline{D} \underline{u} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{lllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
\dot{x} \\
\dot{y} \\
\dot{z} \\
\phi \\
\theta \\
\psi \\
\dot{\phi} \\
\dot{\theta} \\
\dot{\psi}
\end{array}\right]+\left[\underline{0}_{3 \times 4}\right]\left[\begin{array}{c}
T \\
\tau_{x} \\
\tau_{y} \\
\tau_{z}
\end{array}\right]}
\end{aligned}
$$

1
${ }^{1}$ Calculations are carried out by Matlab symbolic analysis

IV.Stability
 Open Loop Response Comparison

For model verification, compare the linearized model with full model
Choose:
Simulation time $=10$ s
$\mathrm{T}=$ sine wave with bias $\mathrm{m}^{*} \mathrm{~g}$, frequency $1 \mathrm{rad} / \mathrm{s}$, amplitude 0.02 N $\tau_{x}=$ sine with no bias, amplitude $0.0001 \mathrm{~N} / \mathrm{m}$, frequency $1 \mathrm{rad} / \mathrm{s}$
$\tau_{y}=$ sine with amplitude $0.0001 \mathrm{~N} / \mathrm{m}$ and frequency $2 \mathrm{rad} / \mathrm{s}$
$\tau_{z}=$ step at time 1 s with final value $0.0001 \mathrm{~N} / \mathrm{m}$
Note: Differences should be rather small when the disturbances are small.

IV.Stability

Open Loop Response Comparison Result

Figure: 18.1 Open Loop Response Comparison Result

IV.Stability

Eigenvalue of State Matrix A

- Reason for linearization: stability analysis
- Eigenvalue of State Matrix A:
eigenvalue $=\left[\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0\right.$
System is marginally stable
Controller in need
- Reason for linearization: relationship between inputs, outputs and state parameters
- For example, which parameter dominates the influence on main thrust T?
By linearization, we can get $T \propto \ddot{z}$, so feedback information for controllers of Thrust Channel, would be about the position z, velocity \dot{z} and acceleration \ddot{z}

V. Controllers

sISO system

PID controllers are chosen for this design.
First, MIMO system are categarized into 4 SISO systems.

$$
\begin{aligned}
& \frac{d}{d t}\left[\begin{array}{l}
z \\
\dot{z}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
z \\
\dot{z}
\end{array}\right]+\left[\begin{array}{c}
0 \\
1.2346
\end{array}\right] T \\
& \frac{d}{d t}\left[\begin{array}{c}
x \\
\dot{x} \\
\theta \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 9.81 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
\dot{x} \\
\theta \\
\dot{\theta}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
147.929
\end{array}\right] \tau_{y} \\
& \frac{d}{d t}\left[\begin{array}{c}
y \\
\dot{y} \\
\phi \\
\dot{\phi}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & -9.81 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
y \\
\dot{y} \\
\phi \\
\dot{\phi}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
147.929
\end{array}\right] \tau_{x} \\
& \frac{d}{d t}\left[\begin{array}{c}
\psi \\
\dot{\psi}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\psi \\
\dot{\psi}
\end{array}\right]+\left[\begin{array}{c}
0 \\
63.2911
\end{array}\right] \tau_{z}
\end{aligned}
$$

V. Controllers

Physical Explanation

Operating Point: Hover Mode, where $T=m * g, \tau_{x}=0, \tau_{y}=0, \tau_{z}=0$
State Space Vector $\left[\begin{array}{llllllllllllll}x & y & z & \dot{x} & \dot{y} & \dot{z} & \phi & \theta & \psi & \dot{\phi} & \dot{\theta} & \dot{\psi}\end{array}\right]^{T}=$
$\left[\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]^{T}$

- 6 relationship: $\ddot{z} \propto T, \ddot{\phi} \propto \tau_{x}, \ddot{y} \propto \phi, \ddot{\theta} \propto \tau_{y}, \ddot{x} \propto \theta, \ddot{\psi} \propto \tau_{z}$
- For $\ddot{z} \propto T$ and $\ddot{y} \propto \phi$ and $\ddot{x} \propto \theta$ and $\ddot{\psi} \propto \tau_{z}$, It is straightforward that the linear/angular accelerations are proportional to the corresponding force/torque.
- For $\ddot{y} \propto \phi$ and $\ddot{x} \propto \theta$,

For example, when the quadrotor tilts from hovering mode for a small pitch angle θ, keeping the thrust equal to $m * g$, then decompose the thrust force in inertial frame. The component in x-direction is $m * g \sin (\theta)$, according to Newton's Law, the acceleration in x-direction \ddot{x} is related to $g \sin (\theta)$. For small angle, $\sin (\theta) \approx \theta$. Hence, \ddot{x} is proportional to θ.
Similarly, \ddot{y} is proportional to ϕ.

V. Controllers

Controller Schematics

Figure: 21.1 Controller Schematics

V. Controllers

- In reality, the sensors can only sense the accelerations with gyroscope or the positions with the help of Global Positioning System (GPS)
- Normally, the inner loop is for faster regulation, the feedback are linear/angular velocities; while the outer loop is for slower regulation, and the feed back are positions of vehicle or Euler angles.

V. Controllers

Controller Schematics with Inner Loop \& Outer Loop

Input
Plant
Output

Figure: 23.1 Controller Schematics with inner \& outer loop

V. Controllers

- Linearization is performed around operating point, when thrust equals to $m * g$ and three torques to be zero. Our control is feedback error control. Using PID controllers, at steady state (infinity time), the feedback error is expected to be zero constantly. The proportional/integral/derivative of zero are all zeros. Thus, input of thrust is zero. However, we are expecting the input to be gravity of the vehicles to keep the vehicle in steady state, namely hovering.
- On the other hand, in the linearized model $\delta \dot{\vec{x}}=A \delta \vec{x}+B \delta \vec{u}$, controllers regulate the variation of space states and inputs, instead of the space states and inputs themselves. That is why we need an offset $m * g$ as the "initial condition" for thrust channel input.

V. Controllers

Controllers Tuning

After controllers schematics finalized, in need of a method to tune PID controllers parameters

- Trial-and-Error Method (recommended)
- Ziegler Nichols Method (constrained)
-Unit Step Response
-Frequency Response
- Root Locus Method (accurate in theory but complicated, troublesome)

V. Controllers

Controllers Tuning-Ziegler Nichols Method

Ziegler Nicholos Unit Step Response

- Apply a unit step input to the plant and obtain response, figure out the values of delay time L, time constant T. ${ }^{1}$
- This method only applies when the step response is an S-shaped curve.
- When the plant involves neither integrator(s) nor dominant complex-conjugate poles, then such a unit-step response curve may look S-shaped.

Figure: 26.1 S-curved Step Response

- Comment: Plant is in form of double integrators $\frac{n u m}{s^{2}}$. NOT WORK.

[^1]
V. Controllers

Controllers Tuning-Ziegler Nichols Method

Ziegler Nicholos Frequency Response

- Apply a step response and increase proportional gain K until the system becomes marginally stable and continuous oscillations, then the corresponding gain \& period of oscillation are called ultimate gain K_{u} and ultimate period P_{u}. 1

Figure: 27.1 Scheme of ZN frequency response method

- Comment: Plant is in form of double integrators $\frac{n u m}{s^{2}}$. NOT WORK.

V. Controllers

Controllers Tuning-Root Locus

From the linearized model Equation of Motions (EMs), we can get Summary of the Transfer Functions(TFs) via Laplace Transform: Linearized EMs TFs TFs with inner\&outer loop ${ }^{1}$

$$
\begin{array}{ccc}
\ddot{X}=9.81 * \theta & \frac{X}{\Theta}=\frac{9.81}{s^{2}} & G_{3.3}=\frac{\dot{X}}{\Theta}=\frac{9.81}{s} G_{3.4}=\frac{X}{\dot{X}}=\frac{1}{s} \\
\ddot{y}=-9.81 * \phi & \frac{Y}{\Phi}=\frac{-9.81}{s^{2}} & G_{2.3}=\frac{\dot{Y}}{\Phi}=\frac{-9.81}{s} G_{2.4}=\frac{Y}{\dot{Y}}=\frac{1}{s} \\
\ddot{z}=1.2346 * T & \frac{Z}{T}=\frac{1.2346}{s^{2}} & G_{1.1}=\frac{\dot{Z}}{T}=\frac{1.2346}{s} G_{1.2}=\frac{Z}{\dot{Z}}=\frac{1}{s} \\
\ddot{\phi}=147.929 * \tau_{x} & \frac{\Phi}{T_{x}}=\frac{147.929}{s^{2}} & G_{2.1}=\frac{\dot{\Phi}}{T_{x}}=\frac{147.929}{s} G_{2.2}=\frac{\Phi}{\dot{\phi}}=\frac{1}{s} \\
\ddot{\theta}=147.929 * \tau_{y} & \frac{\Theta}{T_{y}}=\frac{147.929}{s^{2}} & G_{3.1}=\frac{\dot{\Theta}}{T_{y}}=\frac{147.929}{s} G_{3.2}=\frac{\Theta}{\dot{\Theta}}=\frac{1}{s} \\
\ddot{\psi}=63.2911 * \tau_{z} & \frac{\Psi}{T_{z}}=\frac{63.2911}{s^{2}} & G_{4.1}=\frac{\dot{\Psi}}{T_{z}}=\frac{63.2911}{s} G_{4.2}=\frac{\psi}{\dot{\psi}}=\frac{1}{s}
\end{array}
$$

${ }^{1} G_{i, j}$ denotes the $j^{t h}$ TF of $i^{t h}$ channel

V. Controllers

Root Locus-Thrust \& Yaw Channel

- Thrust \& Yaw Channels are similar to each other.
- 2 loops of controllers
- TFs for Thrust: $G_{1.1}=\frac{\dot{Z}}{T}=\frac{1.2346}{s} G_{1.2}=\frac{Z}{\dot{Z}}=\frac{1}{s}$
- TFs for Yaw: $G_{4.1}=\frac{\dot{\Psi}}{T_{z}}=\frac{63.2911}{s} G_{4.2}=\frac{\psi}{\dot{\psi}}=\frac{1}{s}$

Figure: 29.1 Controllers and Transfer Functions

Note that $G_{n}=\frac{v_{n}}{s}$ are TFs and $C_{n}=K_{n} \frac{s-i_{n}}{s}$ are controllers.
v_{n} are given by TFs derived before
i_{n} are chosen manually
K_{n} are given by root locus plot by selecting the gain corresponding to most rapid stable response.

V. Controllers

Root Locus-Thrust \& Yaw Channel

	v_{1}	i_{1}	K_{1}	v_{2}	i_{2}	K_{2}
Thrust	1.2346	0.1	0.324	1	0.1	0.1
Yaw	63.2911	0.1	0.0632	1	0.1	0.1

Note that $G_{n}=\frac{v_{n}}{s}$ are TFs and $C_{n}=K_{n} \frac{s-i_{n}}{s}$ are controllers.
v_{n} are given by TFs derived before; i_{n} are chosen manually; K_{n} are given by root locus plot by selecting the gain corresponding to most rapid stable response.

[^2]
V. Controllers

Root Locus-Roll \& Pitch Channel

- Roll \& Pitch Channels are similar to each other.
- 4 loops of controllers
- TFs for Roll: $G_{2.1}=\frac{\dot{\Phi}}{T_{x}}=\frac{147.929}{s} G_{2.2}=\frac{\Phi}{\dot{\phi}}=\frac{1}{s}$

$$
G_{2.3}=\frac{\dot{Y}}{\Phi}=\frac{-9.81}{s} G_{2.4}=\frac{Y}{\dot{Y}}=\frac{1}{s}
$$

- TFs for Pitch: $G_{3.1}=\frac{\dot{\theta}}{T_{y}}=\frac{147.929}{s} G_{3.2}=\frac{\Theta}{\dot{\Theta}}=\frac{1}{s}$

$$
G_{3.3}=\frac{\dot{X}}{\Theta}=\frac{9.81}{s} G_{3.4}=\frac{X}{\dot{X}}=\frac{1}{s}
$$

Figure: 31.1 Controllers and Transfer Functions

V. Controllers

Root Locus-Roll \& Pitch Channel

	v_{1}	i_{1}	K_{1}	v_{2}	i_{2}	K_{2}
Roll	147.929	0.1	0.002704	1	0.1	0.1
Pitch	147.929	0.1	0.002704	1	0.1	0.1

	v_{3}	i_{3}	K_{3}	v_{4}	i_{4}	K_{4}
Roll	-9.81	0	-0.01	1	0.1	0.03
Pitch	9.81	0	0.01	1	0.1	0.03

Note: for tuning $C_{2.3}$, plot negative root locus plot.

Note that $G_{n}=\frac{v_{n}}{s}$ are TFs and $C_{n}=K_{n} \frac{s-i_{n}}{s}$ are controllers.
v_{n} are given by TFs derived before; i_{n} are chosen manually; K_{n} are given by root locus plot by selecting the gain corresponding to most rapid stable response.

[^3]
V. Controllers

Parameters Comparison

Channel	Trial \& Error			Root Locus		
Controller	K_{P}	K_{I}	D	K_{P}	K_{I}	K_{D}
Thrust $C_{1.1}$	1.5	0.01	0.05	0.324	0.0324	0
Thrust $C_{1.2}$	0.3	0	0	0.1	0.01	0
Roll $C_{2.1}$	0.05	0	0.0005	0.002704	0.0002704	0
Roll $C_{2.2}$	0.5	0.001	0	0.1	0.01	0
Roll $C_{2.3}$	-0.02	0	0	-0.01	0	0
Roll $C_{2.4}$	0.1	0	0.01	0.03	0.003	0
Pitch $C_{3.1}$	0.05	0	0.0005	0.002704	0.0002704	0
Pitch $C_{3.2}$	0.5	0.001	0	0.1	0.01	0
Pitch $C_{3.3}$	0.02	0	0	0.01	0	0
Pitch $C_{3.4}$	0.1	0	0.01	0.03	0.003	0
Yaw $C_{4.1}$	0.01	0	0.001	0.0632	0.00632	0
Yaw $C_{4.2}$	0.15	0	0.02	0.1	0.01	0

Note that filter coefficient $\mathrm{N}=100$ was chosen.

V. Controllers

Parameters Comparison

- Root locus method is based on linearized model. Only valid when the disturbances are rather small.
- Also, Root Locus methods only provide information about the proportional and integral parts, we have no clues about the derivative parts (and filter coefficients).
- In need of adjustments of PID parameters obtained by Root Locus method, to optimize the behaviors.

VI. Simulation

Longitudinal Manipulation with controllers tuned by Root Locus Objective:
initial condition: Hovering Mode desired position: $x_{d}=0, y_{d}=0, z_{d}=30$, Heading Angle $=0$

Figure: 35.1 Altitude Manipulation

VI. Simulation

Lateral Manipulation with controllers tuned by Root Locus
Objective:
initial condition: Hovering Mode desired position: $x_{d}=0, y_{d}=0, z_{d}=10$, Heading Angle $=10^{\circ}=$ 0.174 rads

Figure: 36.1 Heading Angle Manipulation

VI. Simulation

x position Manipulation with controllers tuned by Root Locus
Objective:
initial condition: Hovering Mode desired position: $x_{d}=30, y_{d}=0, z_{d}=10$, Heading Angle $=0$

Figure: 37.1 Heading Angle Manipulation

VI. Simulation

y position Manipulation with controllers tuned by Root Locus
Objective:
initial condition: Hovering Mode desired position: $x_{d}=0, y_{d}=40, z_{d}=10$, Heading Angle $=0$

Figure: 38.1 Heading Angle Manipulation

VI. Simulation

Limitation of PID controls tuned by Root Locus

- Time invariant controllers
- Behaviors might be aggressive

Figure: 39.1 Velocity of z with $z_{\text {desire }}=30 \mathrm{~m}$

Note that: for position z, rise time $=5.770971 \mathrm{~s}$ and settling time $=11.867515 \mathrm{~s}$.

VI. Simulation

Limitation of PID controls tuned bu Root Locus

Figure: 40.1 Velocity of z with $z_{\text {desire }}=70 \mathrm{~m}$

Note that: for position z, rise time $=6.443427 \mathrm{~s}$ and settling time $=12.517229 \mathrm{~s}$.

VI. Simulation

Limitation of PID controls tuned bu Root Locus

Figure: 41.1 Velocity of z with $z_{\text {desire }}=150 \mathrm{~m}$

Note that: for position z, rise time $=6.29885 \mathrm{~s}$ and settling time $=12.744253 \mathrm{~s}$.

VII. Reality Application

- In reality, we cannot directly control the main thrust T and three torques $\tau_{x}, \tau_{y}, \tau_{z}$
- Relation between 4 thrusts and 4 controlled items:

$$
\left[\begin{array}{c}
T \\
\tau_{x} \\
\tau_{y} \\
\tau_{z}
\end{array}\right]=\left[\begin{array}{c}
T_{1}+T_{2}+T_{3}+T_{4} \\
\left(T_{1}-T_{3}\right) / \\
\left(T_{2}-T_{4}\right) / \\
k\left(T_{1}-T_{2}+T_{3}-T_{4}\right)
\end{array}\right]
$$

- 4 unknowns with 4 equations, SOLVEABLE!

Thank you for your attention!

Reference

Appendix A

Rotation Matrix

$$
\begin{aligned}
& R=\vec{C}_{B I}= \\
& {\left[\begin{array}{ccc}
\cos \psi \cos \theta & \sin \psi \cos \theta & -\sin \theta \\
\cos \psi \sin \theta \sin \phi-\sin \psi \cos \phi & \sin \psi \sin \theta \sin \phi+\cos \psi \cos \phi & \cos \theta \sin \phi \\
\cos \psi \sin \theta \cos \phi+\sin \psi \sin \phi & \sin \psi \sin \theta \cos \phi-\cos \psi \sin \phi & \cos \theta \cos \phi
\end{array}\right]}
\end{aligned}
$$

Rotation matrix \vec{R} is orthonormal, i.e $\vec{R}_{T}=\vec{R}_{-1}$

$$
W=\left[\begin{array}{ccc}
1 & 0 & -\sin \theta \\
0 & \cos \phi & \cos \theta \sin \phi \\
0 & -\sin \phi & \cos \theta \cos \phi
\end{array}\right]
$$

Appendix A

Body Frame Method

Known from classic mechanics, for first derivative, $\vec{v}^{\bullet}=\vec{v}^{\circ}+\vec{\omega} \times \vec{v}$
$\left[\begin{array}{c}-m g \sin (\theta) \\ m g \cos (\theta) \sin (\phi) \\ T+m g \cos (\theta) \cos (\phi)\end{array}\right]=\left[\begin{array}{c}m(\dot{u}+q w-r v) \\ m(\dot{v}+r u-p w) \\ m(\dot{w}+p v-q u)\end{array}\right]$
Force in inertial frame $=\left[\begin{array}{c}-m g \sin (\theta) \\ m g \cos (\theta) \sin (\phi) \\ T+m g \cos (\theta) \cos (\phi)\end{array}\right]$
Velocity in body frame $=\left[\begin{array}{c}u \\ v \\ w\end{array}\right]$
Angular velocity between two frames $=\left[\begin{array}{l}p \\ q \\ r\end{array}\right]$

Appendix B

Ziegler Nichols Method

- Unit Step Response

Type of Controller	K_{p}	$\mathrm{~K}_{I}$	$\mathrm{~K}_{D}$
P	$\frac{T}{L}$	0	0
PI	$\frac{0.9 T}{L}$	$\frac{L}{0.3}$	0
PID	$\frac{1.2 T}{L}$	$2 L$	$0.5 L$

- Frequency Response

Type of Controller	K_{p}	$\mathrm{~K}_{I}$	$\mathrm{~K}_{D}$
P	$0.5 K_{u}$	0	0
PI	$0.45 K_{u}$	$\frac{P_{u}}{1.2}$	0
PID	$0.6 K_{u}$	$0.5 P_{u}$	$0.125 P_{u}$

Appendix C

Root Locus

- Slowest pole dominates the behavior of response.
- Closer the left hand plane poles to the imaginary axis, slower the response is.
- Choose the value of gain K to make the slowest pole as far from the imaginary axis as possible. (as left as possible)
- Controller 1 gain is easy to determinate by calculating the gain corresponding to break-in points.
- Rest of controllers gain are found by using System Identification Toolbox. type "controlSystemDesigner(system)" in command window

Appendix C

Root Locus Plot-Thrust

Root Locus 1.1: thrust $\mathrm{dz}=1.234600^{*} \mathrm{~T} / \mathrm{s}$

Figure: Root Locus Plot (Thrust channels)

Appendix C

Root Locus Plot-Thrust

Root Locus 1.2: thrust $\mathrm{z}=\mathrm{dz} / \mathrm{s}$

Figure: Root Locus Plot (Thrust channels)

Appendix C

Root Locus Plot-Yaw

Root Locus 4.1: yaw dpsi $=63.291100^{*} \mathrm{t} / \mathrm{s}$

Figure: Root Locus Plot (Yaw channels)

Appendix C

Root Locus Plot-Yaw

Root Locus 4.2: yaw $\mathrm{psi}=\mathrm{dpsi} / \mathrm{s}$

Figure: Root Locus Plot (Yaw channels)

Appendix C

Root Locus Plot-Roll \& Pitch

Root Locus 2.1: roll dphi $=147.929000^{*} \mathrm{t}_{\mathrm{x}} / \mathrm{s}$

Figure: Root Locus Plot (Roll \& Pitch channel)

Appendix C

Root Locus Plot-Roll \& Pitch

Root Locus 2.2: $\mathrm{phi}=\mathrm{dphi} / \mathrm{s}$

Figure: Root Locus Plot (Roll \& Pitch channel)

Appendix C

Root Locus Plot-Roll \& Pitch

Root Locus 2.3: $\mathrm{dy}=-9.8322^{*} \mathrm{phi} / \mathrm{s}$

Figure: Root Locus Plot (Roll \& Pitch channel)

Appendix C

Root Locus Plot-Roll \& Pitch

Root Locus 2.4: $\mathrm{y}=\mathrm{dy} / \mathrm{s}$

Figure: Root Locus Plot (Roll \& Pitch channel)

Appendix D

Time Specification

- Rise Time: time to go from 10% to 90% of final value
- Settling Time: time to get within 1% of final value and stay there

[^0]: ${ }^{1}$ See Appendix A. for details
 ${ }^{2}$ See Appendix A for details

[^1]: ${ }^{1}$ See Appendix B. for detailed PID parameters values

[^2]: ${ }^{1}$ See Appendix for plots details

[^3]: ${ }^{1}$ See Appendix for plots details

