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I. Introduction
I Fundamental UAVs – X shape Quad rotors
I No control surfaces, all motions are controlled by 2 types of

identical unidirectional rotors.
I Each rotor can provide a thrust and a torque.
I front motor M1 & rear M3 rotate counterclockwise
I left motor M2 & right M4 turn clockwise.
I Objective:

model the quad rotors and control for tracking problems

Figure: 3.1 Quadrotor
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II.Abbreviation

m mass of quadrotor
g gravity
Ix , Iy , Iz moment of inertia in each direction
~R = C1(φ)C2(θ)C3(ψ) Euler rotation matrix in 1-2-3 sequence1

W angular velocities conversion matrix 2

body frame inertial frame

u,v,w velocities ẋ ,ẏ ,ż velocities
~Ω = p,q,r angular velocities ~̇η = φ̇,θ̇,ψ̇ angular velocities

T main thrust ~ξ = x,y,z positions
τx , τy , τz roll,pitch,yaw torques ~η = φ, θ, ψ Euler angles

1See Appendix A. for details
2See Appendix A for details
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III.Model in body fixed frame

I

 −mgsin(θ)
mgcos(θ)sin(φ)

T + mgcos(θ)cos(φ)

 =

m (u̇ + qw − rv)
m (v̇ + ru − pw)
m (ẇ + pv − qu)


I

τxτy
τz

 =

Ix ṗ − (Iy − Iz) qr
Iy q̇ − (Iz − Ix) pr
Iz ṙ − (Ix − Iy ) pq


I Conversion between body and inertial frame

I

ẋẏ
ż

 = R−1

uv
w


I

φ̇θ̇
ψ̇

 = W−1

pq
r


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III.Model in earth inertial frame
Lagrangian Method

Lagrangian: d
dt

(
∂L
∂q̇

)
−
(
∂L
∂q

)
= ~Fnonconservative

Generalized coordinates q: ~ξ = (x , y , z) and ~η = (φ, θ, ψ)

1. For translation motion (coordinates x,y,z)

I Kinematic Energy T = 1
2mξ̇

T ξ̇

I Potential Energy U = mgz

I Nonconservative force ~F = ~RT ~Fbody = ~RT

 0
0
T


Result:

mẍ
mÿ
mz̈

 =

T (sin(φ)sin(ψ) + cos(φ)cos(ψ)sin(θ))
T (cos(φ)sin(θ)sin(ψ)− cos(ψ)sin(θ))

Tcos(θ)cos(φ)−mg


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III.Model in earth inertial frame
Lagrangian Method

2. For rotation motion (coordinates φ, θ, ψ)

I Kinematic Energy T = 1
2
~ΩT I ~Ω = 1

2
~̇ηT J ~̇η, where J = W T IW

I Potential Energy U=0

I Nonconservative torque RT~τbody

Result:φ̈θ̈
ψ̈

 = J−1
{
RT~τbody −

[
Ẇ T IW + W T I Ẇ − 1

2
∂
∂~η

(
~̇ηT J

)]
~̇η
}

7 / 58



III.Model in earth inertial frame
Newtonian Method

From Newton Second Law, ~F = m~a

Result:

mẍ
mÿ
mz̈

 = RT

 0
0
T

+ ~Fbody = RT

 0
0
T

+

 0
0
mg


Also, I ~̇Ω = −~Ω× I ~Ω + ~τ , where ~Ω = W ~̇η

Result:

φ̈θ̈
ψ̈

 = ~̈η = I−1W−1
(
−I Ẇ ~̇η −W ~̇η × IW ~̇η + ~τbody

)
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III.Modelling
Summary

I Input: main thrust T, torques τx , τy , τz
I Output: positions x,y,z

I State Vector



x
y
z
ẋ
ẏ
ż
φ
θ
ψ

φ̇

θ̇

ψ̇


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III.Modelling
Open Loop Response Comparison

For model verification,
Choose:
Simulation time = 10s
T = sine wave with bias m*g, frequency 1 rad/s, amplitude 0.02 N
τx = sine with no bias, amplitude 0.0001 N/m, frequency 1 rad/s
τy = sine with amplitude 0.0001 N/m and frequency 2 rad/s
τz = step at time 1s with final value 0.0001 N/m
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III.Modelling
Open Loop Response Comparison

Figure: 11.1 Open Loop Response Comparison Result
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III.Model
Difference

Modelling in the body fixed frame and in the earth inertial frame
with Newtonian method look similar.
Difference:
the order of state space vector updates and the conversion between
body frame and inertial frame.

I Every time, state space vectors are updated to next time
based on previous state information.

I body frame modeling does conversion after updates

I inertial frame modeling does conversions first

That is EVERYTHING about the model.
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IV.Stability
Method of Analysis

I Necessity of Controllers
I Plant is Stable?

If No, need stabilizing controllers to stabilize the model
If Yes, need rate controllers to enhance the performance of
plant?

I Impulse Response Analysis
I Stable: at infinite time, response reduced to 0
I Marginally Stable: at infinite time, response reduced to a finite

number
I Unstable: response unbounded

I Poles Position Analysis via eigenvalue of state vector A
I Stable: all poles in left-hand plane
I Marginally Stable: some poles lie on imaginary axis, while no

right-hand plane poles
I Unstable: there exists right-hand plane pole
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IV.Stability
Linearization

I Equation of Motion used (Newtonian Method)
It is of the non-linear form ~̇x = f (~x)

I

mẍ
mÿ
mz̈

 =

T (sin(φ)sin(ψ) + cos(φ)cos(ψ)sin(θ))
T (cos(φ)sin(θ)sin(ψ)− cos(ψ)sin(θ))

Tcos(θ)cos(φ)−mg


I

φ̈θ̈
ψ̈

 = ~̈η = I−1W−1
(
−I Ẇ ~̇η −W ~̇η × IW ~̇η + ~τbody

)
I Linearized around operating point via calculations of Jacobian

I Operating Point: Hovering Mode
T = m ∗ g , τx = 0, τy = 0, τz = 0

State Space Vector
[
x y z ẋ ẏ ż φ θ ψ φ̇ θ̇ ψ̇

]T
=
[

0 0 10 0 0 0 0 0 0 0 0 0
]T
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IV.Stability
Linearized Model
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IV.Stability
Linearized Model

1
1Calculations are carried out by Matlab symbolic analysis
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IV.Stability
Open Loop Response Comparison

For model verification, compare the linearized model with full
model
Choose:
Simulation time = 10s
T = sine wave with bias m*g, frequency 1 rad/s, amplitude 0.02 N
τx = sine with no bias, amplitude 0.0001 N/m, frequency 1 rad/s
τy = sine with amplitude 0.0001 N/m and frequency 2 rad/s
τz = step at time 1s with final value 0.0001 N/m

Note: Differences should be rather small when the disturbances are
small.
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IV.Stability
Open Loop Response Comparison Result

Figure: 18.1 Open Loop Response Comparison Result
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IV.Stability
Eigenvalue of State Matrix A

I Reason for linearization: stability analysis

I Eigenvalue of State Matrix A:
eigenvalue = [0 0 0 0 0 0 0 0 0 0 0 0]
System is marginally stable
Controller in need

I Reason for linearization: relationship between inputs, outputs
and state parameters

I For example, which parameter dominates the influence on
main thrust T?
By linearization, we can get T ∝ z̈ , so feedback information
for controllers of Thrust Channel, would be about the position
z, velocity ż and acceleration z̈
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V. Controllers
SISO system

PID controllers are chosen for this design.
First, MIMO system are categarized into 4 SISO systems.

d
dt

[
z
ż

]
=

[
0 1
0 0

] [
z
ż

]
+

[
0

1.2346

]
T

d
dt


x
ẋ
θ

θ̇

 =


0 1 0 0
0 0 9.81 0
0 0 0 1
0 0 0 0



x
ẋ
θ

θ̇

+


0
0
0

147.929

 τy

d
dt


y
ẏ
φ

φ̇

 =


0 1 0 0
0 0 −9.81 0
0 0 0 1
0 0 0 0



y
ẏ
φ

φ̇

+


0
0
0

147.929

 τx
d
dt

[
ψ

ψ̇

]
=

[
0 1
0 0

] [
ψ

ψ̇

]
+

[
0

63.2911

]
τz
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V. Controllers
Physical Explanation

Operating Point: Hover Mode, where T = m ∗ g , τx = 0, τy = 0, τz = 0

State Space Vector
[

x y z ẋ ẏ ż φ θ ψ φ̇ θ̇ ψ̇
]T =[

0 0 10 0 0 0 0 0 0 0 0 0
]T

I 6 relationship: z̈ ∝ T , φ̈ ∝ τx , ÿ ∝ φ , θ̈ ∝ τy , ẍ ∝ θ , ψ̈ ∝ τz
I For z̈ ∝ T and ÿ ∝ φ and ẍ ∝ θ and ψ̈ ∝ τz , It is straightforward

that the linear/angular accelerations are proportional to the
corresponding force/torque.

I For ÿ ∝ φ and ẍ ∝ θ ,
For example, when the quadrotor tilts from hovering mode for a
small pitch angle θ, keeping the thrust equal to m ∗ g , then
decompose the thrust force in inertial frame. The component in
x-direction is m ∗ gsin(θ), according to Newton’s Law, the
acceleration in x-direction ẍ is related to gsin(θ). For small angle,
sin(θ) ≈ θ. Hence, ẍ is proportional to θ.
Similarly, ÿ is proportional to φ.
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V. Controllers
Controller Schematics

Figure: 21.1 Controller Schematics
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V. Controllers
Inner Loop & Outer Loop

I In reality, the sensors can only sense the accelerations with
gyroscope or the positions with the help of Global Positioning
System (GPS)

I Normally, the inner loop is for faster regulation, the feedback
are linear/angular velocities; while the outer loop is for slower
regulation, and the feed back are positions of vehicle or Euler
angles.
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V. Controllers
Controller Schematics with Inner Loop & Outer Loop

Figure: 23.1 Controller Schematics with inner & outer loop

Summary: 4 channels (Thrust, roll, pitch, yaw torques) 24 / 58



V. Controllers
Offset m ∗ g for thrust channel

I Linearization is performed around operating point, when
thrust equals to m ∗ g and three torques to be zero. Our
control is feedback error control. Using PID controllers, at
steady state (infinity time), the feedback error is expected to
be zero constantly. The proportional/integral/derivative of
zero are all zeros. Thus, input of thrust is zero. However, we
are expecting the input to be gravity of the vehicles to keep
the vehicle in steady state, namely hovering.

I On the other hand, in the linearized model δ~̇x = Aδ~x + Bδ~u,
controllers regulate the variation of space states and inputs,
instead of the space states and inputs themselves. That is
why we need an offset m ∗ g as the ”initial condition” for
thrust channel input.
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V. Controllers
Controllers Tuning

After controllers schematics finalized, in need of a method to tune
PID controllers parameters

I Trial-and-Error Method (recommended)

I Ziegler Nichols Method (constrained)
–Unit Step Response
–Frequency Response

I Root Locus Method (accurate in theory but complicated,
troublesome)
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V. Controllers
Controllers Tuning–Ziegler Nichols Method

Ziegler Nicholos Unit Step Response

I Apply a unit step input to the plant and obtain response,
figure out the values of delay time L, time constant T. 1

I This method only applies when the step response is an
S-shaped curve.

I When the plant involves neither integrator(s) nor dominant
complex-conjugate poles,then such a unit-step response curve may
look S-shaped.

Figure: 26.1 S-curved Step Response

I Comment: Plant is in form of double integrators num
s2 . NOT WORK.

1See Appendix B. for detailed PID parameters values
27 / 58



V. Controllers
Controllers Tuning–Ziegler Nichols Method

Ziegler Nicholos Frequency Response

I Apply a step response and increase proportional gain K until
the system becomes marginally stable and continuous
oscillations, then the corresponding gain & period of
oscillation are called ultimate gain Ku and ultimate period Pu.
1

Figure: 27.1 Scheme of ZN frequency response method

I Comment: Plant is in form of double integratorsnum
s2 . NOT

WORK.

1See Appendix B. for detailed PID parameters values
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V. Controllers
Controllers Tuning–Root Locus

From the linearized model Equation of Motions (EMs), we can get
Summary of the Transfer Functions(TFs) via Laplace Transform:

Linearized EMs TFs TFs with inner&outer loop 1

ẍ = 9.81 ∗ θ X
Θ = 9.81

s2 G3.3 = Ẋ
Θ = 9.81

s G3.4 = X
Ẋ

= 1
s

ÿ = −9.81 ∗ φ Y
Φ = −9.81

s2 G2.3 = Ẏ
Φ = −9.81

s G2.4 = Y
Ẏ

= 1
s

z̈ = 1.2346 ∗ T Z
T = 1.2346

s2 G1.1 = Ż
T = 1.2346

s G1.2 = Z
Ż

= 1
s

φ̈ = 147.929 ∗ τx Φ
Tx

= 147.929
s2 G2.1 = Φ̇

Tx
= 147.929

s G2.2 = Φ
Φ̇

= 1
s

θ̈ = 147.929 ∗ τy Θ
Ty

= 147.929
s2 G3.1 = Θ̇

Ty
= 147.929

s G3.2 = Θ
Θ̇

= 1
s

ψ̈ = 63.2911 ∗ τz Ψ
Tz

= 63.2911
s2 G4.1 = Ψ̇

Tz
= 63.2911

s G4.2 = Ψ
Ψ̇

= 1
s

1Gi,j denotes the j th TF of i th channel
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V. Controllers
Root Locus–Thrust & Yaw Channel

I Thrust & Yaw Channels are similar to each other.

I 2 loops of controllers

I TFs for Thrust: G1.1 = Ż
T = 1.2346

s G1.2 = Z
Ż

= 1
s

I TFs for Yaw: G4.1 = Ψ̇
Tz

= 63.2911
s G4.2 = Ψ

Ψ̇
= 1

s

Figure: 29.1 Controllers and Transfer Functions

Note that Gn = vn
s are TFs and Cn = Kn

s−in
s are controllers.

vn are given by TFs derived before
in are chosen manually
Kn are given by root locus plot by selecting the gain corresponding to most rapid stable response.
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V. Controllers
Root Locus–Thrust & Yaw Channel

v1 i1 K1 v2 i2 K2

Thrust 1.2346 0.1 0.324 1 0.1 0.1
Yaw 63.2911 0.1 0.0632 1 0.1 0.1

1

Note that Gn = vn
s

are TFs and Cn = Kn
s−in

s
are controllers.

vn are given by TFs derived before; in are chosen manually; Kn are given by root locus plot by selecting the gain
corresponding to most rapid stable response.

1See Appendix for plots details
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V. Controllers
Root Locus–Roll & Pitch Channel

I Roll & Pitch Channels are similar to each other.
I 4 loops of controllers

I TFs for Roll: G2.1 = Φ̇
Tx

= 147.929
s G2.2 = Φ

Φ̇
= 1

s

G2.3 = Ẏ
Φ = −9.81

s G2.4 = Y
Ẏ

= 1
s

I TFs for Pitch: G3.1 = Θ̇
Ty

= 147.929
s G3.2 = Θ

Θ̇
= 1

s

G3.3 = Ẋ
Θ = 9.81

s G3.4 = X
Ẋ

= 1
s

Figure: 31.1 Controllers and Transfer Functions
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V. Controllers
Root Locus–Roll & Pitch Channel

v1 i1 K1 v2 i2 K2

Roll 147.929 0.1 0.002704 1 0.1 0.1
Pitch 147.929 0.1 0.002704 1 0.1 0.1

1

v3 i3 K3 v4 i4 K4

Roll -9.81 0 -0.01 1 0.1 0.03
Pitch 9.81 0 0.01 1 0.1 0.03

Note: for tuning C2.3, plot negative root locus plot.
Note that Gn = vn

s
are TFs and Cn = Kn

s−in
s

are controllers.
vn are given by TFs derived before; in are chosen manually; Kn are given by root locus plot by selecting the gain
corresponding to most rapid stable response.

1See Appendix for plots details
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V. Controllers
Parameters Comparison

Channel Trial & Error Root Locus

Controller KP KI D KP KI KD

Thrust C1.1 1.5 0.01 0.05 0.324 0.0324 0
Thrust C1.2 0.3 0 0 0.1 0.01 0

Roll C2.1 0.05 0 0.0005 0.002704 0.0002704 0
Roll C2.2 0.5 0.001 0 0.1 0.01 0
Roll C2.3 -0.02 0 0 -0.01 0 0
Roll C2.4 0.1 0 0.01 0.03 0.003 0

Pitch C3.1 0.05 0 0.0005 0.002704 0.0002704 0
Pitch C3.2 0.5 0.001 0 0.1 0.01 0
Pitch C3.3 0.02 0 0 0.01 0 0
Pitch C3.4 0.1 0 0.01 0.03 0.003 0
Yaw C4.1 0.01 0 0.001 0.0632 0.00632 0
Yaw C4.2 0.15 0 0.02 0.1 0.01 0

Note that filter coefficient N = 100 was chosen.
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V. Controllers
Parameters Comparison

I Root locus method is based on linearized model.
Only valid when the disturbances are rather small.

I Also, Root Locus methods only provide information about the
proportional and integral parts, we have no clues about the
derivative parts (and filter coefficients).

I In need of adjustments of PID parameters obtained by Root
Locus method, to optimize the behaviors.
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VI. Simulation
Longitudinal Manipulation with controllers tuned by Root Locus

Objective:
initial condition: Hovering Mode
desired position: xd = 0, yd = 0, zd = 30, Heading Angle = 0

Figure: 35.1 Altitude Manipulation
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VI. Simulation
Lateral Manipulation with controllers tuned by Root Locus

Objective:
initial condition: Hovering Mode
desired position: xd = 0, yd = 0, zd = 10, Heading Angle = 10◦ =
0.174 rads

Figure: 36.1 Heading Angle Manipulation
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VI. Simulation
x position Manipulation with controllers tuned by Root Locus

Objective:
initial condition: Hovering Mode
desired position: xd = 30, yd = 0, zd = 10, Heading Angle = 0

Figure: 37.1 Heading Angle Manipulation
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VI. Simulation
y position Manipulation with controllers tuned by Root Locus

Objective:
initial condition: Hovering Mode
desired position: xd = 0, yd = 40, zd = 10, Heading Angle = 0

Figure: 38.1 Heading Angle Manipulation
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VI. Simulation
Limitation of PID controls tuned by Root Locus

I Time invariant controllers
I Behaviors might be aggressive

Figure: 39.1 Velocity of z with zdesire = 30m

Note that: for position z,
rise time =5.770971s and settling time =11.867515s.
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VI. Simulation
Limitation of PID controls tuned bu Root Locus

Figure: 40.1 Velocity of z with zdesire = 70m

Note that: for position z,
rise time =6.443427s and settling time =12.517229s.
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VI. Simulation
Limitation of PID controls tuned bu Root Locus

Figure: 41.1 Velocity of z with zdesire = 150m

Note that: for position z,
rise time =6.29885s and settling time =12.744253s.
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VII. Reality Application

I In reality, we cannot directly control the main thrust T and
three torques τx , τy , τz

I Relation between 4 thrusts and 4 controlled items:
T
τx
τy
τz

 =


T1 + T2 + T3 + T4

(T1 − T3) l
(T2 − T4) l

k (T1 − T2 + T3 − T4)


I 4 unknowns with 4 equations, SOLVEABLE!
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Thank you for your attention!
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Appendix A
Rotation Matrix

R = ~CBI = cosψcosθ sinψcosθ −sinθ
cosψsinθsinφ− sinψcosφ sinψsinθsinφ+ cosψcosφ cosθsinφ
cosψsinθcosφ+ sinψsinφ sinψsinθcosφ− cosψsinφ cosθcosφ


Rotation matrix ~R is orthonormal, i.e ~RT = ~R−1

W =

1 0 −sinθ
0 cosφ cosθsinφ
0 −sinφ cosθcosφ


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Appendix A
Body Frame Method

Known from classic mechanics, for first derivative, ~v• = ~v◦ + ~ω× ~v −mgsin(θ)
mgcos(θ)sin(φ)

T + mgcos(θ)cos(φ)

 =

m (u̇ + qw − rv)
m (v̇ + ru − pw)
m (ẇ + pv − qu)



Force in inertial frame =

 −mgsin(θ)
mgcos(θ)sin(φ)

T + mgcos(θ)cos(φ)


Velocity in body frame =

uv
w


Angular velocity between two frames =

pq
r


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Appendix B
Ziegler Nichols Method

I Unit Step Response
Type of Controller Kp KI KD

P T
L 0 0

PI 0.9T
L

L
0.3 0

PID 1.2T
L 2L 0.5L

I Frequency Response
Type of Controller Kp KI KD

P 0.5Ku 0 0

PI 0.45Ku
Pu
1.2 0

PID 0.6Ku 0.5Pu 0.125Pu
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Appendix C
Root Locus

I Slowest pole dominates the behavior of response.

I Closer the left hand plane poles to the imaginary axis, slower
the response is.

I Choose the value of gain K to make the slowest pole as far
from the imaginary axis as possible. (as left as possible)

I Controller 1 gain is easy to determinate by calculating the
gain corresponding to break-in points.

I Rest of controllers gain are found by using System
Identification Toolbox.
type ”controlSystemDesigner(system)” in command window
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Appendix C
Root Locus Plot–Thrust

Figure: Root Locus Plot (Thrust channels) 50 / 58



Appendix C
Root Locus Plot–Thrust

Figure: Root Locus Plot (Thrust channels) 51 / 58



Appendix C
Root Locus Plot–Yaw

Figure: Root Locus Plot (Yaw channels) 52 / 58



Appendix C
Root Locus Plot–Yaw

Figure: Root Locus Plot (Yaw channels) 53 / 58



Appendix C
Root Locus Plot–Roll & Pitch

Figure: Root Locus Plot (Roll & Pitch channel) 54 / 58



Appendix C
Root Locus Plot–Roll & Pitch

Figure: Root Locus Plot (Roll & Pitch channel) 55 / 58



Appendix C
Root Locus Plot–Roll & Pitch

Figure: Root Locus Plot (Roll & Pitch channel) 56 / 58



Appendix C
Root Locus Plot–Roll & Pitch

Figure: Root Locus Plot (Roll & Pitch channel) 57 / 58



Appendix D
Time Specification

I Rise Time: time to go from 10% to 90% of final value

I Settling Time: time to get within 1% of final value and stay
there
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